Tcl Source Code

Check-in [610f5b391c]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:merge trunk
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | remove-pathappend-intrep
Files: files | file ages | folders
SHA1: 610f5b391c8fc97ea8e6b801ac3b32dd1e260915
User & Date: dgp 2011-10-13 19:18:44
Context
2011-10-17
17:38
merge trunk check-in: bde0ffa6e5 user: dgp tags: remove-pathappend-intrep
2011-10-13
19:18
merge trunk check-in: 610f5b391c user: dgp tags: remove-pathappend-intrep
18:19
Correct botch. check-in: f0486f9bbd user: dgp tags: trunk
2011-10-06
19:57
Handle empty tail case to stop test failures. check-in: b14befee57 user: dgp tags: remove-pathappend-intrep
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ChangeLog.


























1
2
3
4
5
6
7

























2011-10-05  Jan Nijtmans  <[email protected]>

	* win/tclWinInt.h:   Remove tclWinProcs, as it is no longer
	* win/tclWin32Dll.c: being used.

2011-10-03  Venkat Iyer <[email protected]>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
2011-10-11  Jan Nijtmans  <[email protected]>

	* win/tclWinFile.c:    [Bug 2935503] Incorrect mode field
	returned by file stat command

2011-10-09  Donal K. Fellows  <[email protected]>

	* generic/tclCompCmds.c (TclCompileDictWithCmd): Corrected handling of
	qualified names, and added spacial cases for empty bodies (used when
	[dict with] is just used for extracting variables).

2011-10-07  Jan Nijtmans  <[email protected]>

	* generic/tcl.h:        Fix gcc warnings (discovered with
	* generic/tclIORChan.c: latest mingw, based on gcc 4.6.1)
	* tests/env.test:       Fix env.test, when running
	under wine 1.3

2011-10-06  Donal K. Fellows  <[email protected]>

	* generic/tclDictObj.c (TclDictWithInit, TclDictWithFinish):
	* generic/tclCompCmds.c (TclCompileDictWithCmd): Experimental
	compilation for the [dict with] subcommand, using parts factored out
	from the interpreted version of the command.

2011-10-05  Jan Nijtmans  <[email protected]>

	* win/tclWinInt.h:   Remove tclWinProcs, as it is no longer
	* win/tclWin32Dll.c: being used.

2011-10-03  Venkat Iyer <[email protected]>

Changes to generic/tcl.h.

2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

/*
 * Shorthand for commonly used argTable entries.
 */

#define TCL_ARGV_AUTO_HELP \
    {TCL_ARGV_HELP,	"-help",	NULL,	NULL, \
	    "Print summary of command-line options and abort"}
#define TCL_ARGV_AUTO_REST \
    {TCL_ARGV_REST,	"--",		NULL,	NULL, \
	    "Marks the end of the options"}
#define TCL_ARGV_TABLE_END \
    {TCL_ARGV_END}

/*
 *----------------------------------------------------------------------------
 * Definitions needed for Tcl_Zlib routines. [TIP #234]
 *
 * Constants for the format flags describing what sort of data format is
 * desired/expected for the Tcl_ZlibDeflate, Tcl_ZlibInflate and







|


|

|







2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

/*
 * Shorthand for commonly used argTable entries.
 */

#define TCL_ARGV_AUTO_HELP \
    {TCL_ARGV_HELP,	"-help",	NULL,	NULL, \
	    "Print summary of command-line options and abort", NULL}
#define TCL_ARGV_AUTO_REST \
    {TCL_ARGV_REST,	"--",		NULL,	NULL, \
	    "Marks the end of the options", NULL}
#define TCL_ARGV_TABLE_END \
    {TCL_ARGV_END, NULL, NULL, NULL, NULL, NULL}

/*
 *----------------------------------------------------------------------------
 * Definitions needed for Tcl_Zlib routines. [TIP #234]
 *
 * Constants for the format flags describing what sort of data format is
 * desired/expected for the Tcl_ZlibDeflate, Tcl_ZlibInflate and

Changes to generic/tclAssembly.c.

366
367
368
369
370
371
372

373
374
375
376


377
378
379
380
381
382
383
					INST_BEGIN_CATCH4,	0,	0},
    {"bitand",		ASSEM_1BYTE,	INST_BITAND,		2,	1},
    {"bitnot",		ASSEM_1BYTE,	INST_BITNOT,		1,	1},
    {"bitor",		ASSEM_1BYTE,	INST_BITOR,		2,	1},
    {"bitxor",		ASSEM_1BYTE,	INST_BITXOR,		2,	1},
    {"concat",		ASSEM_CONCAT1,	INST_CONCAT1,		INT_MIN,1},
    {"dictAppend",	ASSEM_LVT4,	INST_DICT_APPEND,	2,	1},

    {"dictGet",		ASSEM_DICT_GET, INST_DICT_GET,		INT_MIN,1},
    {"dictIncrImm",	ASSEM_SINT4_LVT4,
					INST_DICT_INCR_IMM,	1,	1},
    {"dictLappend",	ASSEM_LVT4,	INST_DICT_LAPPEND,	2,	1},


    {"dictSet",		ASSEM_DICT_SET, INST_DICT_SET,		INT_MIN,1},
    {"dictUnset",	ASSEM_DICT_UNSET,
					INST_DICT_UNSET,	INT_MIN,1},
    {"div",		ASSEM_1BYTE,	INST_DIV,		2,	1},
    {"dup",		ASSEM_1BYTE,	INST_DUP,		1,	2},
    {"endCatch",	ASSEM_END_CATCH,INST_END_CATCH,		0,	0},
    {"eq",		ASSEM_1BYTE,	INST_EQ,		2,	1},







>




>
>







366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
					INST_BEGIN_CATCH4,	0,	0},
    {"bitand",		ASSEM_1BYTE,	INST_BITAND,		2,	1},
    {"bitnot",		ASSEM_1BYTE,	INST_BITNOT,		1,	1},
    {"bitor",		ASSEM_1BYTE,	INST_BITOR,		2,	1},
    {"bitxor",		ASSEM_1BYTE,	INST_BITXOR,		2,	1},
    {"concat",		ASSEM_CONCAT1,	INST_CONCAT1,		INT_MIN,1},
    {"dictAppend",	ASSEM_LVT4,	INST_DICT_APPEND,	2,	1},
    {"dictExpand",	ASSEM_1BYTE,	INST_DICT_EXPAND,	3,	1},
    {"dictGet",		ASSEM_DICT_GET, INST_DICT_GET,		INT_MIN,1},
    {"dictIncrImm",	ASSEM_SINT4_LVT4,
					INST_DICT_INCR_IMM,	1,	1},
    {"dictLappend",	ASSEM_LVT4,	INST_DICT_LAPPEND,	2,	1},
    {"dictRecombineStk",ASSEM_1BYTE,	INST_DICT_RECOMBINE_STK,3,	0},
    {"dictRecombineImm",ASSEM_LVT4,	INST_DICT_RECOMBINE_IMM,2,	0},
    {"dictSet",		ASSEM_DICT_SET, INST_DICT_SET,		INT_MIN,1},
    {"dictUnset",	ASSEM_DICT_UNSET,
					INST_DICT_UNSET,	INT_MIN,1},
    {"div",		ASSEM_1BYTE,	INST_DIV,		2,	1},
    {"dup",		ASSEM_1BYTE,	INST_DUP,		1,	2},
    {"endCatch",	ASSEM_END_CATCH,INST_END_CATCH,		0,	0},
    {"eq",		ASSEM_1BYTE,	INST_EQ,		2,	1},

Changes to generic/tclCompCmds.c.

78
79
80
81
82
83
84












85
86
87
88
89
90
91
    envPtr->clNext = mapPtr->loc[eclIndex].next[(word)]

#define PushVarNameWord(i,v,e,f,l,s,sc,word) \
    PushVarName(i,v,e,f,l,s,sc,						\
	    mapPtr->loc[eclIndex].line[(word)],				\
	    mapPtr->loc[eclIndex].next[(word)])













/*
 * Flags bits used by PushVarName.
 */

#define TCL_NO_LARGE_INDEX 1	/* Do not return localIndex value > 255 */

/*







>
>
>
>
>
>
>
>
>
>
>
>







78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    envPtr->clNext = mapPtr->loc[eclIndex].next[(word)]

#define PushVarNameWord(i,v,e,f,l,s,sc,word) \
    PushVarName(i,v,e,f,l,s,sc,						\
	    mapPtr->loc[eclIndex].line[(word)],				\
	    mapPtr->loc[eclIndex].next[(word)])

/*
 * Often want to issue one of two versions of an instruction based on whether
 * the argument will fit in a single byte or not. This makes it much clearer.
 */

#define Emit14Inst(nm,idx,envPtr) \
    if (idx <= 255) {							\
	TclEmitInstInt1(nm##1,idx,envPtr);				\
    } else {								\
	TclEmitInstInt4(nm##4,idx,envPtr);				\
    }

/*
 * Flags bits used by PushVarName.
 */

#define TCL_NO_LARGE_INDEX 1	/* Do not return localIndex value > 255 */

/*
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
     * Emit instructions to set/get the variable.
     */

    if (simpleVarName) {
	if (isScalar) {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_APPEND_STK, envPtr);
	    } else if (localIndex <= 255) {
		TclEmitInstInt1(INST_APPEND_SCALAR1, localIndex, envPtr);
	    } else {
		TclEmitInstInt4(INST_APPEND_SCALAR4, localIndex, envPtr);
	    }
	} else {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_APPEND_ARRAY_STK, envPtr);
	    } else if (localIndex <= 255) {
		TclEmitInstInt1(INST_APPEND_ARRAY1, localIndex, envPtr);
	    } else {
		TclEmitInstInt4(INST_APPEND_ARRAY4, localIndex, envPtr);
	    }
	}
    } else {
	TclEmitOpcode(INST_APPEND_STK, envPtr);
    }

    return TCL_OK;







<
<

|




<
<

|







194
195
196
197
198
199
200


201
202
203
204
205
206


207
208
209
210
211
212
213
214
215
     * Emit instructions to set/get the variable.
     */

    if (simpleVarName) {
	if (isScalar) {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_APPEND_STK, envPtr);


	    } else {
		Emit14Inst(INST_APPEND_SCALAR, localIndex, envPtr);
	    }
	} else {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_APPEND_ARRAY_STK, envPtr);


	    } else {
		Emit14Inst(INST_APPEND_ARRAY, localIndex, envPtr);
	    }
	}
    } else {
	TclEmitOpcode(INST_APPEND_STK, envPtr);
    }

    return TCL_OK;
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
     * The reason for duplicating the script is that EVAL_STK would otherwise
     * begin by undeflowing the stack below the mark set by BEGIN_CATCH4.
     */

    SetLineInformation(1);
    if (cmdTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
	savedStackDepth = envPtr->currStackDepth;
	TclEmitInstInt4(INST_BEGIN_CATCH4, range, envPtr);
	ExceptionRangeStarts(envPtr, range);
	CompileBody(envPtr, cmdTokenPtr, interp);
    } else {
	CompileTokens(envPtr, cmdTokenPtr, interp);
	savedStackDepth = envPtr->currStackDepth;
	TclEmitInstInt4(INST_BEGIN_CATCH4, range, envPtr);
	ExceptionRangeStarts(envPtr, range);
	TclEmitOpcode(INST_DUP, envPtr);
	TclEmitOpcode(INST_EVAL_STK, envPtr);
    }
    /* Stack at this point:
     *    nonsimple:  script <mark> result
     *    simple:            <mark> result
     */

    /*







|





|

|
|







370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
     * The reason for duplicating the script is that EVAL_STK would otherwise
     * begin by undeflowing the stack below the mark set by BEGIN_CATCH4.
     */

    SetLineInformation(1);
    if (cmdTokenPtr->type == TCL_TOKEN_SIMPLE_WORD) {
	savedStackDepth = envPtr->currStackDepth;
	TclEmitInstInt4(	INST_BEGIN_CATCH4, range,	envPtr);
	ExceptionRangeStarts(envPtr, range);
	CompileBody(envPtr, cmdTokenPtr, interp);
    } else {
	CompileTokens(envPtr, cmdTokenPtr, interp);
	savedStackDepth = envPtr->currStackDepth;
	TclEmitInstInt4(	INST_BEGIN_CATCH4, range,	envPtr);
	ExceptionRangeStarts(envPtr, range);
	TclEmitOpcode(		INST_DUP,			envPtr);
	TclEmitOpcode(		INST_EVAL_STK,			envPtr);
    }
    /* Stack at this point:
     *    nonsimple:  script <mark> result
     *    simple:            <mark> result
     */

    /*
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
     * Emit the "error case" epilogue. Push the interpreter result
     * and the return code.
     */

    envPtr->currStackDepth = savedStackDepth;
    ExceptionRangeTarget(envPtr, range, catchOffset);
    /* Stack at this point:  ?script? */
    TclEmitOpcode(INST_PUSH_RESULT, envPtr);
    TclEmitOpcode(INST_PUSH_RETURN_CODE, envPtr);

    /*
     * Update the target of the jump after the "no errors" code. 
     */

    /* Stack at this point: ?script? result returnCode */
    if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
	Tcl_Panic("TclCompileCatchCmd: bad jump distance %d",
		(int)(CurrentOffset(envPtr) - jumpFixup.codeOffset));
    }

    /* Push the return options if the caller wants them */

    if (optsIndex != -1) {
	TclEmitOpcode(INST_PUSH_RETURN_OPTIONS, envPtr);
    }

    /*
     * End the catch
     */

    ExceptionRangeEnds(envPtr, range);
    TclEmitOpcode(INST_END_CATCH, envPtr);

    /*
     * At this point, the top of the stack is inconveniently ordered:
     *		?script? result returnCode ?returnOptions?
     * Reverse the stack to bring the result to the top.
     */

    if (optsIndex != -1) {
	TclEmitInstInt4(INST_REVERSE, 3, envPtr);
    } else {
	TclEmitInstInt4(INST_REVERSE, 2, envPtr);
    }

    /*
     * Store the result if requested, and remove it from the stack
     */

    if (resultIndex != -1) {
	if (resultIndex <= 255) {
	    TclEmitInstInt1(INST_STORE_SCALAR1, resultIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_STORE_SCALAR4, resultIndex, envPtr);
	}
    }
    TclEmitOpcode(INST_POP, envPtr);

    /*
     * Stack is now ?script? ?returnOptions? returnCode.
     * If the options dict has been requested, it is buried on the stack
     * under the return code. Reverse the stack to bring it to the top,
     * store it and remove it from the stack.
     */

    if (optsIndex != -1) {
	TclEmitInstInt4(INST_REVERSE, 2, envPtr);
	if (optsIndex <= 255) {
	    TclEmitInstInt1(INST_STORE_SCALAR1, optsIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_STORE_SCALAR4, optsIndex, envPtr);
	}
	TclEmitOpcode(INST_POP, envPtr);
    }

    /* 
     * Stack is now ?script? result. Get rid of the subst'ed script
     * if it's hanging arond.
     */

    if (cmdTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
	TclEmitInstInt4(INST_REVERSE, 2, envPtr);
	TclEmitOpcode(INST_POP, envPtr);
    }

    /* 
     * Result of all this, on either branch, should have been to leave
     * one operand -- the return code -- on the stack.
     */








|
|














|







|








|

|







<
|
<
<
|
<
|









|
<
|
<
<
<
|








|
|







403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

453


454

455
456
457
458
459
460
461
462
463
464
465

466



467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
     * Emit the "error case" epilogue. Push the interpreter result
     * and the return code.
     */

    envPtr->currStackDepth = savedStackDepth;
    ExceptionRangeTarget(envPtr, range, catchOffset);
    /* Stack at this point:  ?script? */
    TclEmitOpcode(		INST_PUSH_RESULT,		envPtr);
    TclEmitOpcode(		INST_PUSH_RETURN_CODE,		envPtr);

    /*
     * Update the target of the jump after the "no errors" code. 
     */

    /* Stack at this point: ?script? result returnCode */
    if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
	Tcl_Panic("TclCompileCatchCmd: bad jump distance %d",
		(int)(CurrentOffset(envPtr) - jumpFixup.codeOffset));
    }

    /* Push the return options if the caller wants them */

    if (optsIndex != -1) {
	TclEmitOpcode(		INST_PUSH_RETURN_OPTIONS,	envPtr);
    }

    /*
     * End the catch
     */

    ExceptionRangeEnds(envPtr, range);
    TclEmitOpcode(		INST_END_CATCH,			envPtr);

    /*
     * At this point, the top of the stack is inconveniently ordered:
     *		?script? result returnCode ?returnOptions?
     * Reverse the stack to bring the result to the top.
     */

    if (optsIndex != -1) {
	TclEmitInstInt4(	INST_REVERSE, 3,		envPtr);
    } else {
	TclEmitInstInt4(	INST_REVERSE, 2,		envPtr);
    }

    /*
     * Store the result if requested, and remove it from the stack
     */

    if (resultIndex != -1) {

	Emit14Inst(		INST_STORE_SCALAR, resultIndex,	envPtr);


    }

    TclEmitOpcode(		INST_POP,			envPtr);

    /*
     * Stack is now ?script? ?returnOptions? returnCode.
     * If the options dict has been requested, it is buried on the stack
     * under the return code. Reverse the stack to bring it to the top,
     * store it and remove it from the stack.
     */

    if (optsIndex != -1) {
	TclEmitInstInt4(	INST_REVERSE, 2,		envPtr);

	Emit14Inst(		INST_STORE_SCALAR, optsIndex,	envPtr);



	TclEmitOpcode(		INST_POP,			envPtr);
    }

    /* 
     * Stack is now ?script? result. Get rid of the subst'ed script
     * if it's hanging arond.
     */

    if (cmdTokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
	TclEmitInstInt4(	INST_REVERSE, 2,		envPtr);
	TclEmitOpcode(		INST_POP,			envPtr);
    }

    /* 
     * Result of all this, on either branch, should have been to leave
     * one operand -- the return code -- on the stack.
     */

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
     * fixed-sized jumps. That simplifies things a lot!
     *
     * First up, get the dictionary and start the iteration. No catching of
     * errors at this point.
     */

    CompileWord(envPtr, dictTokenPtr, interp, 3);
    TclEmitInstInt4( INST_DICT_FIRST, infoIndex,		envPtr);
    emptyTargetOffset = CurrentOffset(envPtr);
    TclEmitInstInt4( INST_JUMP_TRUE4, 0,			envPtr);

    /*
     * Now we catch errors from here on so that we can finalize the search
     * started by Tcl_DictObjFirst above.
     */

    catchRange = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
    TclEmitInstInt4( INST_BEGIN_CATCH4, catchRange,		envPtr);
    ExceptionRangeStarts(envPtr, catchRange);

    /*
     * Inside the iteration, write the loop variables.
     */

    bodyTargetOffset = CurrentOffset(envPtr);
    TclEmitInstInt4( INST_STORE_SCALAR4, keyVarIndex,		envPtr);
    TclEmitOpcode(   INST_POP,					envPtr);
    TclEmitInstInt4( INST_STORE_SCALAR4, valueVarIndex,		envPtr);
    TclEmitOpcode(   INST_POP,					envPtr);

    /*
     * Set up the loop exception targets.
     */

    loopRange = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
    ExceptionRangeStarts(envPtr, loopRange);

    /*
     * Compile the loop body itself. It should be stack-neutral.
     */

    SetLineInformation(4);
    CompileBody(envPtr, bodyTokenPtr, interp);
    TclEmitOpcode(   INST_POP,					envPtr);

    /*
     * Both exception target ranges (error and loop) end here.
     */

    ExceptionRangeEnds(envPtr, loopRange);
    ExceptionRangeEnds(envPtr, catchRange);

    /*
     * Continue (or just normally process) by getting the next pair of items
     * from the dictionary and jumping back to the code to write them into
     * variables if there is another pair.
     */

    ExceptionRangeTarget(envPtr, loopRange, continueOffset);
    TclEmitInstInt4( INST_DICT_NEXT, infoIndex,			envPtr);
    jumpDisplacement = bodyTargetOffset - CurrentOffset(envPtr);
    TclEmitInstInt4( INST_JUMP_FALSE4, jumpDisplacement,	envPtr);
    TclEmitOpcode(   INST_POP,					envPtr);
    TclEmitOpcode(   INST_POP,					envPtr);

    /*
     * Now do the final cleanup for the no-error case (this is where we break
     * out of the loop to) by force-terminating the iteration (if not already
     * terminated), ditching the exception info and jumping to the last
     * instruction for this command. In theory, this could be done using the
     * "finally" clause (next generated) but this is faster.
     */

    ExceptionRangeTarget(envPtr, loopRange, breakOffset);
    TclEmitInstInt1( INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(     infoIndex,					envPtr);
    TclEmitOpcode(   INST_END_CATCH,				envPtr);
    endTargetOffset = CurrentOffset(envPtr);
    TclEmitInstInt4( INST_JUMP4, 0,				envPtr);

    /*
     * Error handler "finally" clause, which force-terminates the iteration
     * and rethrows the error.
     */

    ExceptionRangeTarget(envPtr, catchRange, catchOffset);
    TclEmitOpcode(   INST_PUSH_RETURN_OPTIONS,			envPtr);
    TclEmitOpcode(   INST_PUSH_RESULT,				envPtr);
    TclEmitInstInt1( INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(     infoIndex,					envPtr);
    TclEmitOpcode(   INST_END_CATCH,				envPtr);
    TclEmitOpcode(   INST_RETURN_STK,				envPtr);

    /*
     * Otherwise we're done (the jump after the DICT_FIRST points here) and we
     * need to pop the bogus key/value pair (pushed to keep stack calculations
     * easy!) Note that we skip the END_CATCH. [Bug 1382528]
     */

    envPtr->currStackDepth = savedStackDepth+2;
    jumpDisplacement = CurrentOffset(envPtr) - emptyTargetOffset;
    TclUpdateInstInt4AtPc(INST_JUMP_TRUE4, jumpDisplacement,
	    envPtr->codeStart + emptyTargetOffset);
    TclEmitOpcode(   INST_POP,					envPtr);
    TclEmitOpcode(   INST_POP,					envPtr);
    TclEmitInstInt1( INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(     infoIndex,					envPtr);

    /*
     * Final stage of the command (normal case) is that we push an empty
     * object. This is done last to promote peephole optimization when it's
     * dropped immediately.
     */








|

|







|







|
|
|
|














|















|

|
|
|










|
|
|

|







|
|
|
|
|
|











|
|
|
|







840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
     * fixed-sized jumps. That simplifies things a lot!
     *
     * First up, get the dictionary and start the iteration. No catching of
     * errors at this point.
     */

    CompileWord(envPtr, dictTokenPtr, interp, 3);
    TclEmitInstInt4(	INST_DICT_FIRST, infoIndex,		envPtr);
    emptyTargetOffset = CurrentOffset(envPtr);
    TclEmitInstInt4(	INST_JUMP_TRUE4, 0,			envPtr);

    /*
     * Now we catch errors from here on so that we can finalize the search
     * started by Tcl_DictObjFirst above.
     */

    catchRange = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
    TclEmitInstInt4(	INST_BEGIN_CATCH4, catchRange,		envPtr);
    ExceptionRangeStarts(envPtr, catchRange);

    /*
     * Inside the iteration, write the loop variables.
     */

    bodyTargetOffset = CurrentOffset(envPtr);
    Emit14Inst(		INST_STORE_SCALAR, keyVarIndex,		envPtr);
    TclEmitOpcode(	INST_POP,				envPtr);
    Emit14Inst(		INST_STORE_SCALAR, valueVarIndex,	envPtr);
    TclEmitOpcode(	INST_POP,				envPtr);

    /*
     * Set up the loop exception targets.
     */

    loopRange = DeclareExceptionRange(envPtr, LOOP_EXCEPTION_RANGE);
    ExceptionRangeStarts(envPtr, loopRange);

    /*
     * Compile the loop body itself. It should be stack-neutral.
     */

    SetLineInformation(4);
    CompileBody(envPtr, bodyTokenPtr, interp);
    TclEmitOpcode(	INST_POP,				envPtr);

    /*
     * Both exception target ranges (error and loop) end here.
     */

    ExceptionRangeEnds(envPtr, loopRange);
    ExceptionRangeEnds(envPtr, catchRange);

    /*
     * Continue (or just normally process) by getting the next pair of items
     * from the dictionary and jumping back to the code to write them into
     * variables if there is another pair.
     */

    ExceptionRangeTarget(envPtr, loopRange, continueOffset);
    TclEmitInstInt4(	INST_DICT_NEXT, infoIndex,		envPtr);
    jumpDisplacement = bodyTargetOffset - CurrentOffset(envPtr);
    TclEmitInstInt4(	INST_JUMP_FALSE4, jumpDisplacement,	envPtr);
    TclEmitOpcode(	INST_POP,				envPtr);
    TclEmitOpcode(	INST_POP,				envPtr);

    /*
     * Now do the final cleanup for the no-error case (this is where we break
     * out of the loop to) by force-terminating the iteration (if not already
     * terminated), ditching the exception info and jumping to the last
     * instruction for this command. In theory, this could be done using the
     * "finally" clause (next generated) but this is faster.
     */

    ExceptionRangeTarget(envPtr, loopRange, breakOffset);
    TclEmitInstInt1(	INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(	infoIndex,				envPtr);
    TclEmitOpcode(	INST_END_CATCH,				envPtr);
    endTargetOffset = CurrentOffset(envPtr);
    TclEmitInstInt4(	INST_JUMP4, 0,				envPtr);

    /*
     * Error handler "finally" clause, which force-terminates the iteration
     * and rethrows the error.
     */

    ExceptionRangeTarget(envPtr, catchRange, catchOffset);
    TclEmitOpcode(	INST_PUSH_RETURN_OPTIONS,		envPtr);
    TclEmitOpcode(	INST_PUSH_RESULT,			envPtr);
    TclEmitInstInt1(	INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(	infoIndex,				envPtr);
    TclEmitOpcode(	INST_END_CATCH,				envPtr);
    TclEmitOpcode(	INST_RETURN_STK,			envPtr);

    /*
     * Otherwise we're done (the jump after the DICT_FIRST points here) and we
     * need to pop the bogus key/value pair (pushed to keep stack calculations
     * easy!) Note that we skip the END_CATCH. [Bug 1382528]
     */

    envPtr->currStackDepth = savedStackDepth+2;
    jumpDisplacement = CurrentOffset(envPtr) - emptyTargetOffset;
    TclUpdateInstInt4AtPc(INST_JUMP_TRUE4, jumpDisplacement,
	    envPtr->codeStart + emptyTargetOffset);
    TclEmitOpcode(	INST_POP,				envPtr);
    TclEmitOpcode(	INST_POP,				envPtr);
    TclEmitInstInt1(	INST_UNSET_SCALAR, 0,			envPtr);
    TclEmitInt4(	infoIndex,				envPtr);

    /*
     * Final stage of the command (normal case) is that we push an empty
     * object. This is done last to promote peephole optimization when it's
     * dropped immediately.
     */

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
     */

    infoIndex = TclCreateAuxData(duiPtr, &tclDictUpdateInfoType, envPtr);

    for (i=0 ; i<numVars ; i++) {
	CompileWord(envPtr, keyTokenPtrs[i], interp, i);
    }
    TclEmitInstInt4( INST_LIST, numVars,			envPtr);
    TclEmitInstInt4( INST_DICT_UPDATE_START, dictIndex,		envPtr);
    TclEmitInt4(     infoIndex,					envPtr);

    range = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
    TclEmitInstInt4( INST_BEGIN_CATCH4, range,			envPtr);

    ExceptionRangeStarts(envPtr, range);
    envPtr->currStackDepth++;
    CompileBody(envPtr, bodyTokenPtr, interp);
    envPtr->currStackDepth = savedStackDepth;
    ExceptionRangeEnds(envPtr, range);

    /*
     * Normal termination code: the stack has the key list below the result of
     * the body evaluation: swap them and finish the update code.
     */

    TclEmitOpcode(   INST_END_CATCH,				envPtr);
    TclEmitInstInt4( INST_REVERSE, 2,				envPtr);
    TclEmitInstInt4( INST_DICT_UPDATE_END, dictIndex,		envPtr);
    TclEmitInt4(     infoIndex,					envPtr);

    /*
     * Jump around the exceptional termination code.
     */

    TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpFixup);

    /*
     * Termination code for non-ok returns: stash the result and return
     * options in the stack, bring up the key list, finish the update code,
     * and finally return with the catched return data
     */

    ExceptionRangeTarget(envPtr, range, catchOffset);
    TclEmitOpcode(   INST_PUSH_RESULT,				envPtr);
    TclEmitOpcode(   INST_PUSH_RETURN_OPTIONS,			envPtr);
    TclEmitOpcode(   INST_END_CATCH,				envPtr);
    TclEmitInstInt4( INST_REVERSE, 3,				envPtr);

    TclEmitInstInt4( INST_DICT_UPDATE_END, dictIndex,		envPtr);
    TclEmitInt4(     infoIndex,					envPtr);
    TclEmitOpcode(   INST_RETURN_STK,				envPtr);

    if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
	Tcl_Panic("TclCompileDictCmd(update): bad jump distance %d",
		(int) (CurrentOffset(envPtr) - jumpFixup.codeOffset));
    }
    TclStackFree(interp, keyTokenPtrs);
    return TCL_OK;







|
|
|


|












|
|
|
|














|
|
|
|

|
|
|







1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
     */

    infoIndex = TclCreateAuxData(duiPtr, &tclDictUpdateInfoType, envPtr);

    for (i=0 ; i<numVars ; i++) {
	CompileWord(envPtr, keyTokenPtrs[i], interp, i);
    }
    TclEmitInstInt4(	INST_LIST, numVars,			envPtr);
    TclEmitInstInt4(	INST_DICT_UPDATE_START, dictIndex,	envPtr);
    TclEmitInt4(	infoIndex,				envPtr);

    range = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
    TclEmitInstInt4(	INST_BEGIN_CATCH4, range,		envPtr);

    ExceptionRangeStarts(envPtr, range);
    envPtr->currStackDepth++;
    CompileBody(envPtr, bodyTokenPtr, interp);
    envPtr->currStackDepth = savedStackDepth;
    ExceptionRangeEnds(envPtr, range);

    /*
     * Normal termination code: the stack has the key list below the result of
     * the body evaluation: swap them and finish the update code.
     */

    TclEmitOpcode(	INST_END_CATCH,				envPtr);
    TclEmitInstInt4(	INST_REVERSE, 2,			envPtr);
    TclEmitInstInt4(	INST_DICT_UPDATE_END, dictIndex,	envPtr);
    TclEmitInt4(	infoIndex,				envPtr);

    /*
     * Jump around the exceptional termination code.
     */

    TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpFixup);

    /*
     * Termination code for non-ok returns: stash the result and return
     * options in the stack, bring up the key list, finish the update code,
     * and finally return with the catched return data
     */

    ExceptionRangeTarget(envPtr, range, catchOffset);
    TclEmitOpcode(	INST_PUSH_RESULT,			envPtr);
    TclEmitOpcode(	INST_PUSH_RETURN_OPTIONS,		envPtr);
    TclEmitOpcode(	INST_END_CATCH,				envPtr);
    TclEmitInstInt4(	INST_REVERSE, 3,			envPtr);

    TclEmitInstInt4(	INST_DICT_UPDATE_END, dictIndex,	envPtr);
    TclEmitInt4(	infoIndex,				envPtr);
    TclEmitOpcode(	INST_RETURN_STK,			envPtr);

    if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
	Tcl_Panic("TclCompileDictCmd(update): bad jump distance %d",
		(int) (CurrentOffset(envPtr) - jumpFixup.codeOffset));
    }
    TclStackFree(interp, keyTokenPtrs);
    return TCL_OK;
1227
1228
1229
1230
1231
1232
1233
1234







































































































































































































































































1235
1236
1237
1238
1239
1240
1241
    }
    dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, envPtr);
    if (dictVarIndex < 0) {
	return TCL_ERROR;
    }
    CompileWord(envPtr, keyTokenPtr, interp, 3);
    CompileWord(envPtr, valueTokenPtr, interp, 4);
    TclEmitInstInt4( INST_DICT_LAPPEND, dictVarIndex, envPtr);







































































































































































































































































    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * DupDictUpdateInfo, FreeDictUpdateInfo --







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
    }
    dictVarIndex = TclFindCompiledLocal(name, nameChars, 1, envPtr);
    if (dictVarIndex < 0) {
	return TCL_ERROR;
    }
    CompileWord(envPtr, keyTokenPtr, interp, 3);
    CompileWord(envPtr, valueTokenPtr, interp, 4);
    TclEmitInstInt4(	INST_DICT_LAPPEND, dictVarIndex,	envPtr);
    return TCL_OK;
}

int
TclCompileDictWithCmd(
    Tcl_Interp *interp,		/* Used for looking up stuff. */
    Tcl_Parse *parsePtr,	/* Points to a parse structure for the command
				 * created by Tcl_ParseCommand. */
    Command *cmdPtr,		/* Points to defintion of command being
				 * compiled. */
    CompileEnv *envPtr)		/* Holds resulting instructions. */
{
    DefineLineInformation;	/* TIP #280 */
    int i, range, varNameTmp, pathTmp, keysTmp, gotPath, dictVar = -1;
    int bodyIsEmpty = 1;
    Tcl_Token *varTokenPtr, *tokenPtr;
    int savedStackDepth = envPtr->currStackDepth;
    JumpFixup jumpFixup;
    const char *ptr, *end;

    /*
     * There must be at least one argument after the command.
     */

    if (parsePtr->numWords < 3) {
	return TCL_ERROR;
    }

    /*
     * Parse the command (trivially). Expect the following:
     *   dict with <any (varName)> ?<any> ...? <literal>
     */

    varTokenPtr = TokenAfter(parsePtr->tokenPtr);
    tokenPtr = TokenAfter(varTokenPtr);
    for (i=3 ; i<parsePtr->numWords ; i++) {
	tokenPtr = TokenAfter(tokenPtr);
    }
    if (tokenPtr->type != TCL_TOKEN_SIMPLE_WORD) {
	return TCL_ERROR;
    }

    /*
     * Test if the last word is an empty script; if so, we can compile it in
     * all cases, but if it is non-empty we need local variable table entries
     * to hold the temporary variables (used to keep stack usage simple).
     */

    for (ptr=tokenPtr[1].start,end=ptr+tokenPtr[1].size ; ptr!=end ; ptr++) {
	if (*ptr!=' ' && *ptr!='\t' && *ptr!='\n' && *ptr!='\r') {
	    if (envPtr->procPtr == NULL) {
		return TCL_ERROR;
	    }
	    bodyIsEmpty = 0;
	    break;
	}
    }

    /*
     * Determine if we're manipulating a dict in a simple local variable.
     */

    gotPath = (parsePtr->numWords > 3);
    if (varTokenPtr->type == TCL_TOKEN_SIMPLE_WORD &&
	    TclIsLocalScalar(varTokenPtr[1].start, varTokenPtr[1].size)) {
	dictVar = TclFindCompiledLocal(varTokenPtr[1].start,
		varTokenPtr[1].size, 1, envPtr);
    }

    /*
     * Special case: an empty body means we definitely have no need to issue
     * try-finally style code or to allocate local variable table entries for
     * storing temporaries. Still need to do both INST_DICT_EXPAND and
     * INST_DICT_RECOMBINE_* though, because we can't determine if we're free
     * of traces.
     */

    if (bodyIsEmpty) {
	if (dictVar >= 0) {
	    if (gotPath) {
		/*
		 * Case: Path into dict in LVT with empty body.
		 */

		tokenPtr = TokenAfter(varTokenPtr);
		for (i=2 ; i<parsePtr->numWords-1 ; i++) {
		    CompileWord(envPtr, tokenPtr, interp, i-1);
		    tokenPtr = TokenAfter(tokenPtr);
		}
		TclEmitInstInt4(INST_LIST, parsePtr->numWords-3,envPtr);
		Emit14Inst(	INST_LOAD_SCALAR, dictVar,	envPtr);
		TclEmitInstInt4(INST_OVER, 1,			envPtr);
		TclEmitOpcode(	INST_DICT_EXPAND,		envPtr);
		TclEmitInstInt4(INST_DICT_RECOMBINE_IMM, dictVar, envPtr);
		PushLiteral(envPtr, "", 0);
	    } else {
		/*
		 * Case: Direct dict in LVT with empty body.
		 */

		PushLiteral(envPtr, "", 0);
		Emit14Inst(	INST_LOAD_SCALAR, dictVar,	envPtr);
		PushLiteral(envPtr, "", 0);
		TclEmitOpcode(	INST_DICT_EXPAND,		envPtr);
		TclEmitInstInt4(INST_DICT_RECOMBINE_IMM, dictVar, envPtr);
		PushLiteral(envPtr, "", 0);
	    }
	} else {
	    if (gotPath) {
		/*
		 * Case: Path into dict in non-simple var with empty body.
		 */

		tokenPtr = varTokenPtr;
		for (i=1 ; i<parsePtr->numWords-1 ; i++) {
		    CompileWord(envPtr, tokenPtr, interp, i-1);
		    tokenPtr = TokenAfter(tokenPtr);
		}
		TclEmitInstInt4(INST_LIST, parsePtr->numWords-3,envPtr);
		TclEmitInstInt4(INST_OVER, 1,			envPtr);
		TclEmitOpcode(	INST_LOAD_STK,			envPtr);
		TclEmitInstInt4(INST_OVER, 1,			envPtr);
		TclEmitOpcode(	INST_DICT_EXPAND,		envPtr);
		TclEmitOpcode(	INST_DICT_RECOMBINE_STK,	envPtr);
		PushLiteral(envPtr, "", 0);
	    } else {
		/*
		 * Case: Direct dict in non-simple var with empty body.
		 */

		CompileWord(envPtr, varTokenPtr, interp, 0);
		TclEmitOpcode(	INST_DUP,			envPtr);
		TclEmitOpcode(	INST_LOAD_STK,			envPtr);
		PushLiteral(envPtr, "", 0);
		TclEmitOpcode(	INST_DICT_EXPAND,		envPtr);
		PushLiteral(envPtr, "", 0);
		TclEmitInstInt4(INST_REVERSE, 2,		envPtr);
		TclEmitOpcode(	INST_DICT_RECOMBINE_STK,	envPtr);
		PushLiteral(envPtr, "", 0);
	    }
	}
	return TCL_OK;
    }

    /*
     * OK, we have a non-trivial body. This means that the focus is on
     * generating a try-finally structure where the INST_DICT_RECOMBINE_* goes
     * in the 'finally' clause.
     *
     * Start by allocating local (unnamed, untraced) working variables.
     */

    if (dictVar == -1) {
	varNameTmp = TclFindCompiledLocal(NULL, 0, 1, envPtr);
    } else {
	varNameTmp = -1;
    }
    if (gotPath) {
	pathTmp = TclFindCompiledLocal(NULL, 0, 1, envPtr);
    } else {
	pathTmp = -1;
    }
    keysTmp = TclFindCompiledLocal(NULL, 0, 1, envPtr);

    /*
     * Issue instructions. First, the part to expand the dictionary.
     */

    if (varNameTmp > -1) {
	CompileWord(envPtr, varTokenPtr, interp, 0);
	Emit14Inst(		INST_STORE_SCALAR, varNameTmp,	envPtr);
    }
    tokenPtr = TokenAfter(varTokenPtr);
    if (gotPath) {
	for (i=2 ; i<parsePtr->numWords-1 ; i++) {
	    CompileWord(envPtr, tokenPtr, interp, i-1);
	    tokenPtr = TokenAfter(tokenPtr);
	}
	TclEmitInstInt4(	INST_LIST, parsePtr->numWords-3,envPtr);
	Emit14Inst(		INST_STORE_SCALAR, pathTmp,	envPtr);
	TclEmitOpcode(		INST_POP,			envPtr);
    }
    if (dictVar == -1) {
	TclEmitOpcode(		INST_LOAD_STK,			envPtr);
    } else {
	Emit14Inst(		INST_LOAD_SCALAR, dictVar,	envPtr);
    }
    if (gotPath) {
	Emit14Inst(		INST_LOAD_SCALAR, pathTmp,	envPtr);
    } else {
	PushLiteral(envPtr, "", 0);
    }
    TclEmitOpcode(		INST_DICT_EXPAND,		envPtr);
    Emit14Inst(			INST_STORE_SCALAR, keysTmp,	envPtr);
    TclEmitOpcode(		INST_POP,			envPtr);

    /*
     * Now the body of the [dict with].
     */

    range = DeclareExceptionRange(envPtr, CATCH_EXCEPTION_RANGE);
    TclEmitInstInt4(		INST_BEGIN_CATCH4, range,	envPtr);

    ExceptionRangeStarts(envPtr, range);
    envPtr->currStackDepth++;
    SetLineInformation(parsePtr->numWords-1);
    CompileBody(envPtr, tokenPtr, interp);
    envPtr->currStackDepth = savedStackDepth;
    ExceptionRangeEnds(envPtr, range);

    /*
     * Now fold the results back into the dictionary in the OK case.
     */

    TclEmitOpcode(		INST_END_CATCH,			envPtr);
    if (varNameTmp > -1) {
	Emit14Inst(		INST_LOAD_SCALAR, varNameTmp,	envPtr);
    }
    if (gotPath) {
	Emit14Inst(		INST_LOAD_SCALAR, pathTmp,	envPtr);
    } else {
	PushLiteral(envPtr, "", 0);
    }
    Emit14Inst(			INST_LOAD_SCALAR, keysTmp,	envPtr);
    if (dictVar == -1) {
	TclEmitOpcode(		INST_DICT_RECOMBINE_STK,	envPtr);
    } else {
	TclEmitInstInt4(	INST_DICT_RECOMBINE_IMM, dictVar, envPtr);
    }
    TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP, &jumpFixup);

    /*
     * Now fold the results back into the dictionary in the exception case.
     */

    ExceptionRangeTarget(envPtr, range, catchOffset);
    TclEmitOpcode(		INST_PUSH_RETURN_OPTIONS,	envPtr);
    TclEmitOpcode(		INST_PUSH_RESULT,		envPtr);
    TclEmitOpcode(		INST_END_CATCH,			envPtr);
    if (varNameTmp > -1) {
	Emit14Inst(		INST_LOAD_SCALAR, varNameTmp,	envPtr);
    }
    if (parsePtr->numWords > 3) {
	Emit14Inst(		INST_LOAD_SCALAR, pathTmp,	envPtr);
    } else {
	PushLiteral(envPtr, "", 0);
    }
    Emit14Inst(			INST_LOAD_SCALAR, keysTmp,	envPtr);
    if (dictVar == -1) {
	TclEmitOpcode(		INST_DICT_RECOMBINE_STK,	envPtr);
    } else {
	TclEmitInstInt4(	INST_DICT_RECOMBINE_IMM, dictVar, envPtr);
    }
    TclEmitOpcode(		INST_RETURN_STK,		envPtr);

    /*
     * Prepare for the start of the next command.
     */

    if (TclFixupForwardJumpToHere(envPtr, &jumpFixup, 127)) {
	Tcl_Panic("TclCompileDictCmd(update): bad jump distance %d",
		(int) (CurrentOffset(envPtr) - jumpFixup.codeOffset));
    }
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * DupDictUpdateInfo, FreeDictUpdateInfo --
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    for (i = 0, tokenPtr = parsePtr->tokenPtr;
	    i < numWords-1;
	    i++, tokenPtr = TokenAfter(tokenPtr)) {
	if ((i%2 == 0) && (i > 0)) {
	    SetLineInformation(i);
	    CompileTokens(envPtr, tokenPtr, interp);
	    tempVar = (firstValueTemp + loopIndex);
	    if (tempVar <= 255) {
		TclEmitInstInt1(INST_STORE_SCALAR1, tempVar, envPtr);
	    } else {
		TclEmitInstInt4(INST_STORE_SCALAR4, tempVar, envPtr);
	    }
	    TclEmitOpcode(INST_POP, envPtr);
	    loopIndex++;
	}
    }

    /*
     * Initialize the temporary var that holds the count of loop iterations.
     */

    TclEmitInstInt4(INST_FOREACH_START4, infoIndex, envPtr);

    /*
     * Top of loop code: assign each loop variable and check whether
     * to terminate the loop.
     */

    ExceptionRangeTarget(envPtr, range, continueOffset);
    TclEmitInstInt4(INST_FOREACH_STEP4, infoIndex, envPtr);
    TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpFalseFixup);

    /*
     * Inline compile the loop body.
     */

    SetLineInformation(bodyIndex);
    ExceptionRangeStarts(envPtr, range);
    CompileBody(envPtr, bodyTokenPtr, interp);
    ExceptionRangeEnds(envPtr, range);
    envPtr->currStackDepth = savedStackDepth + 1;
    TclEmitOpcode(INST_POP, envPtr);

    /*
     * Jump back to the test at the top of the loop. Generate a 4 byte jump if
     * the distance to the test is > 120 bytes. This is conservative and
     * ensures that we won't have to replace this jump if we later need to
     * replace the ifFalse jump with a 4 byte jump.
     */







<
|
<
<
<
|








|







|











|







2029
2030
2031
2032
2033
2034
2035

2036



2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
    for (i = 0, tokenPtr = parsePtr->tokenPtr;
	    i < numWords-1;
	    i++, tokenPtr = TokenAfter(tokenPtr)) {
	if ((i%2 == 0) && (i > 0)) {
	    SetLineInformation(i);
	    CompileTokens(envPtr, tokenPtr, interp);
	    tempVar = (firstValueTemp + loopIndex);

	    Emit14Inst(		INST_STORE_SCALAR, tempVar,	envPtr);



	    TclEmitOpcode(	INST_POP,			envPtr);
	    loopIndex++;
	}
    }

    /*
     * Initialize the temporary var that holds the count of loop iterations.
     */

    TclEmitInstInt4(		INST_FOREACH_START4, infoIndex,	envPtr);

    /*
     * Top of loop code: assign each loop variable and check whether
     * to terminate the loop.
     */

    ExceptionRangeTarget(envPtr, range, continueOffset);
    TclEmitInstInt4(		INST_FOREACH_STEP4, infoIndex,	envPtr);
    TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpFalseFixup);

    /*
     * Inline compile the loop body.
     */

    SetLineInformation(bodyIndex);
    ExceptionRangeStarts(envPtr, range);
    CompileBody(envPtr, bodyTokenPtr, interp);
    ExceptionRangeEnds(envPtr, range);
    envPtr->currStackDepth = savedStackDepth + 1;
    TclEmitOpcode(		INST_POP,			envPtr);

    /*
     * Jump back to the test at the top of the loop. Generate a 4 byte jump if
     * the distance to the test is > 120 bytes. This is conservative and
     * ensures that we won't have to replace this jump if we later need to
     * replace the ifFalse jump with a 4 byte jump.
     */
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
	localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);

	if (localIndex < 0) {
	    return TCL_ERROR;
	}

	CompileWord(envPtr, varTokenPtr, interp, 1);
	TclEmitInstInt4(INST_NSUPVAR, localIndex, envPtr);
    }

    /*
     * Pop the namespace, and set the result to empty
     */

    TclEmitOpcode(INST_POP, envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *







|






|







2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
	localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);

	if (localIndex < 0) {
	    return TCL_ERROR;
	}

	CompileWord(envPtr, varTokenPtr, interp, 1);
	TclEmitInstInt4(	INST_NSUPVAR, localIndex,	envPtr);
    }

    /*
     * Pop the namespace, and set the result to empty
     */

    TclEmitOpcode(		INST_POP,			envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
2481
2482
2483
2484
2485
2486
2487
2488





2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
	haveImmValue = 1;
    }

    /*
     * Emit the instruction to increment the variable.
     */

    if (simpleVarName) {





	if (isScalar) {
	    if (localIndex >= 0) {
		if (haveImmValue) {
		    TclEmitInstInt1(INST_INCR_SCALAR1_IMM, localIndex, envPtr);
		    TclEmitInt1(immValue, envPtr);
		} else {
		    TclEmitInstInt1(INST_INCR_SCALAR1, localIndex, envPtr);
		}
	    } else {
		if (haveImmValue) {
		    TclEmitInstInt1(INST_INCR_SCALAR_STK_IMM, immValue, envPtr);
		} else {
		    TclEmitOpcode(INST_INCR_SCALAR_STK, envPtr);
		}
	    }
	} else {
	    if (localIndex >= 0) {
		if (haveImmValue) {
		    TclEmitInstInt1(INST_INCR_ARRAY1_IMM, localIndex, envPtr);
		    TclEmitInt1(immValue, envPtr);
		} else {
		    TclEmitInstInt1(INST_INCR_ARRAY1, localIndex, envPtr);
		}
	    } else {
		if (haveImmValue) {
		    TclEmitInstInt1(INST_INCR_ARRAY_STK_IMM, immValue, envPtr);
		} else {
		    TclEmitOpcode(INST_INCR_ARRAY_STK, envPtr);
		}
	    }
	}
    } else {			/* Non-simple variable name. */
	if (haveImmValue) {
	    TclEmitInstInt1(INST_INCR_STK_IMM, immValue, envPtr);
	} else {
	    TclEmitOpcode(INST_INCR_STK, envPtr);
	}
    }

    return TCL_OK;
}

/*







|
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
<
<
<
<







2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781







2782
2783
2784
2785
2786
2787
2788
	haveImmValue = 1;
    }

    /*
     * Emit the instruction to increment the variable.
     */

    if (!simpleVarName) {
	if (haveImmValue) {
	    TclEmitInstInt1(	INST_INCR_STK_IMM, immValue,	envPtr);
	} else {
	    TclEmitOpcode(	INST_INCR_STK,			envPtr);
	}
    } else if (isScalar) {	/* Simple scalar variable. */
	if (localIndex >= 0) {
	    if (haveImmValue) {
		TclEmitInstInt1(INST_INCR_SCALAR1_IMM, localIndex, envPtr);
		TclEmitInt1(immValue, envPtr);
	    } else {
		TclEmitInstInt1(INST_INCR_SCALAR1, localIndex,	envPtr);
	    }
	} else {
	    if (haveImmValue) {
		TclEmitInstInt1(INST_INCR_SCALAR_STK_IMM, immValue, envPtr);
	    } else {
		TclEmitOpcode(	INST_INCR_SCALAR_STK,		envPtr);
	    }
	}
    } else {			/* Simple array variable. */
	if (localIndex >= 0) {
	    if (haveImmValue) {
		TclEmitInstInt1(INST_INCR_ARRAY1_IMM, localIndex, envPtr);
		TclEmitInt1(immValue, envPtr);
	    } else {
		TclEmitInstInt1(INST_INCR_ARRAY1, localIndex,	envPtr);
	    }
	} else {
	    if (haveImmValue) {
		TclEmitInstInt1(INST_INCR_ARRAY_STK_IMM, immValue, envPtr);
	    } else {
		TclEmitOpcode(	INST_INCR_ARRAY_STK,		envPtr);
	    }







	}
    }

    return TCL_OK;
}

/*
2575
2576
2577
2578
2579
2580
2581
2582

2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
    PushVarNameWord(interp, tokenPtr, envPtr, 0, &localIndex,
	    &simpleVarName, &isScalar, 1);

    /*
     * Emit instruction to check the variable for existence.
     */

    if (simpleVarName) {

	if (isScalar) {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_EXIST_STK, envPtr);
	    } else {
		TclEmitInstInt4(INST_EXIST_SCALAR, localIndex, envPtr);
	    }
	} else {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_EXIST_ARRAY_STK, envPtr);
	    } else {
		TclEmitInstInt4(INST_EXIST_ARRAY, localIndex, envPtr);
	    }
	}
    } else {
	TclEmitOpcode(INST_EXIST_STK, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------







|
>
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<







2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852



2853
2854
2855
2856
2857
2858
2859
    PushVarNameWord(interp, tokenPtr, envPtr, 0, &localIndex,
	    &simpleVarName, &isScalar, 1);

    /*
     * Emit instruction to check the variable for existence.
     */

    if (!simpleVarName) {
	TclEmitOpcode(		INST_EXIST_STK,			envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_EXIST_STK,			envPtr);
	} else {
	    TclEmitInstInt4(	INST_EXIST_SCALAR, localIndex,	envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_EXIST_ARRAY_STK,		envPtr);
	} else {
	    TclEmitInstInt4(	INST_EXIST_ARRAY, localIndex,	envPtr);
	}



    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
2680
2681
2682
2683
2684
2685
2686
2687

2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
     */

    /*
     * The *_STK opcodes should be refactored to make better use of existing
     * LOAD/STORE instructions.
     */

    if (simpleVarName) {

	if (isScalar) {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_LAPPEND_STK, envPtr);
	    } else if (localIndex <= 255) {
		TclEmitInstInt1(INST_LAPPEND_SCALAR1, localIndex, envPtr);
	    } else {
		TclEmitInstInt4(INST_LAPPEND_SCALAR4, localIndex, envPtr);
	    }
	} else {
	    if (localIndex < 0) {
		TclEmitOpcode(INST_LAPPEND_ARRAY_STK, envPtr);
	    } else if (localIndex <= 255) {
		TclEmitInstInt1(INST_LAPPEND_ARRAY1, localIndex, envPtr);
	    } else {
		TclEmitInstInt4(INST_LAPPEND_ARRAY4, localIndex, envPtr);
	    }
	}
    } else {
	TclEmitOpcode(INST_LAPPEND_STK, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------







|
>
|
|
|
<
<
|
|
|
|
|
|
<
<
|
|
|
<
<
<







2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946


2947
2948
2949
2950
2951
2952


2953
2954
2955



2956
2957
2958
2959
2960
2961
2962
     */

    /*
     * The *_STK opcodes should be refactored to make better use of existing
     * LOAD/STORE instructions.
     */

    if (!simpleVarName) {
	TclEmitOpcode(		INST_LAPPEND_STK,		envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_LAPPEND_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_LAPPEND_SCALAR, localIndex, envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_LAPPEND_ARRAY_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_LAPPEND_ARRAY, localIndex,	envPtr);
	}



    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
2772
2773
2774
2775
2776
2777
2778
2779




2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792

2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806

2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
		&simpleVarName, &isScalar, idx+2);

	/*
	 * Emit instructions to get the idx'th item out of the list value on
	 * the stack and assign it to the variable.
	 */

	if (simpleVarName) {




	    if (isScalar) {
		if (localIndex >= 0) {
		    TclEmitOpcode(INST_DUP, envPtr);
		    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
		    if (localIndex <= 255) {
			TclEmitInstInt1(INST_STORE_SCALAR1,localIndex,envPtr);
		    } else {
			TclEmitInstInt4(INST_STORE_SCALAR4,localIndex,envPtr);
		    }
		} else {
		    TclEmitInstInt4(INST_OVER, 1, envPtr);
		    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
		    TclEmitOpcode(INST_STORE_SCALAR_STK, envPtr);

		}
	    } else {
		if (localIndex >= 0) {
		    TclEmitInstInt4(INST_OVER, 1, envPtr);
		    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
		    if (localIndex <= 255) {
			TclEmitInstInt1(INST_STORE_ARRAY1, localIndex, envPtr);
		    } else {
			TclEmitInstInt4(INST_STORE_ARRAY4, localIndex, envPtr);
		    }
		} else {
		    TclEmitInstInt4(INST_OVER, 2, envPtr);
		    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
		    TclEmitOpcode(INST_STORE_ARRAY_STK, envPtr);

		}
	    }
	} else {
	    TclEmitInstInt4(INST_OVER, 1, envPtr);
	    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
	    TclEmitOpcode(INST_STORE_STK, envPtr);
	}
	TclEmitOpcode(INST_POP, envPtr);
    }

    /*
     * Generate code to leave the rest of the list on the stack.
     */

    TclEmitInstInt4(INST_LIST_RANGE_IMM, idx, envPtr);
    TclEmitInt4(-2, envPtr);	/* -2 == "end" */

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *







|
>
>
>
>
|
|
|
|
<
|
<
|
<
|
|
|
|
>
|
|
|
|
|
<
|
<
|
<
|
|
|
|
>
|
|
<
<
<
<
<
<






|
|







3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036

3037

3038

3039
3040
3041
3042
3043
3044
3045
3046
3047
3048

3049

3050

3051
3052
3053
3054
3055
3056
3057






3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
		&simpleVarName, &isScalar, idx+2);

	/*
	 * Emit instructions to get the idx'th item out of the list value on
	 * the stack and assign it to the variable.
	 */

	if (!simpleVarName) {
	    TclEmitInstInt4(	INST_OVER, 1,			envPtr);
	    TclEmitInstInt4(	INST_LIST_INDEX_IMM, idx,	envPtr);
	    TclEmitOpcode(	INST_STORE_STK,			envPtr);
	    TclEmitOpcode(	INST_POP,			envPtr);
	} else if (isScalar) {
	    if (localIndex >= 0) {
		TclEmitOpcode(	INST_DUP,			envPtr);
		TclEmitInstInt4(INST_LIST_INDEX_IMM, idx,	envPtr);

		Emit14Inst(	INST_STORE_SCALAR, localIndex,	envPtr);

		TclEmitOpcode(	INST_POP,			envPtr);

	    } else {
		TclEmitInstInt4(INST_OVER, 1,			envPtr);
		TclEmitInstInt4(INST_LIST_INDEX_IMM, idx,	envPtr);
		TclEmitOpcode(	INST_STORE_SCALAR_STK,		envPtr);
		TclEmitOpcode(	INST_POP,			envPtr);
	    }
	} else {
	    if (localIndex >= 0) {
		TclEmitInstInt4(INST_OVER, 1,			envPtr);
		TclEmitInstInt4(INST_LIST_INDEX_IMM, idx,	envPtr);

		Emit14Inst(	INST_STORE_ARRAY, localIndex,	envPtr);

		TclEmitOpcode(	INST_POP,			envPtr);

	    } else {
		TclEmitInstInt4(INST_OVER, 2,			envPtr);
		TclEmitInstInt4(INST_LIST_INDEX_IMM, idx,	envPtr);
		TclEmitOpcode(	INST_STORE_ARRAY_STK,		envPtr);
		TclEmitOpcode(	INST_POP,			envPtr);
	    }
	}






    }

    /*
     * Generate code to leave the rest of the list on the stack.
     */

    TclEmitInstInt4(		INST_LIST_RANGE_IMM, idx,	envPtr);
    TclEmitInt4(		-2 /* == "end" */,		envPtr);

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
	     * construct:
	     *	 lindex <arbitraryValue> <posInt>
	     * This is best compiled as a push of the arbitrary value followed
	     * by an "immediate lindex" which is the most efficient variety.
	     */

	    CompileWord(envPtr, valTokenPtr, interp, 1);
	    TclEmitInstInt4(INST_LIST_INDEX_IMM, idx, envPtr);
	    return TCL_OK;
	}

	/*
	 * If the conversion failed or the value was negative, we just keep on
	 * going with the more complex compilation.
	 */







|







3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
	     * construct:
	     *	 lindex <arbitraryValue> <posInt>
	     * This is best compiled as a push of the arbitrary value followed
	     * by an "immediate lindex" which is the most efficient variety.
	     */

	    CompileWord(envPtr, valTokenPtr, interp, 1);
	    TclEmitInstInt4(	INST_LIST_INDEX_IMM, idx,	envPtr);
	    return TCL_OK;
	}

	/*
	 * If the conversion failed or the value was negative, we just keep on
	 * going with the more complex compilation.
	 */
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925

    /*
     * Emit INST_LIST_INDEX if objc==3, or INST_LIST_INDEX_MULTI if there are
     * multiple index args.
     */

    if (numWords == 3) {
	TclEmitOpcode(INST_LIST_INDEX, envPtr);
    } else {
	TclEmitInstInt4(INST_LIST_INDEX_MULTI, numWords-1, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------







|

|







3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168

    /*
     * Emit INST_LIST_INDEX if objc==3, or INST_LIST_INDEX_MULTI if there are
     * multiple index args.
     */

    if (numWords == 3) {
	TclEmitOpcode(		INST_LIST_INDEX,		envPtr);
    } else {
	TclEmitInstInt4(	INST_LIST_INDEX_MULTI, numWords-1, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
2945
2946
2947
2948
2949
2950
2951


2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
    Tcl_Parse *parsePtr,	/* Points to a parse structure for the command
				 * created by Tcl_ParseCommand. */
    Command *cmdPtr,		/* Points to defintion of command being
				 * compiled. */
    CompileEnv *envPtr)		/* Holds resulting instructions. */
{
    DefineLineInformation;	/* TIP #280 */



    /*
     * If we're not in a procedure, don't compile.
     */

    if (envPtr->procPtr == NULL) {
	return TCL_ERROR;
    }

    if (parsePtr->numWords == 1) {
	/*
	 * [list] without arguments just pushes an empty object.
	 */

	PushLiteral(envPtr, "", 0);
    } else {
	/*
	 * Push the all values onto the stack.
	 */

	Tcl_Token *valueTokenPtr;
	int i, numWords;

	numWords = parsePtr->numWords;

	valueTokenPtr = TokenAfter(parsePtr->tokenPtr);
	for (i = 1; i < numWords; i++) {
	    CompileWord(envPtr, valueTokenPtr, interp, i);
	    valueTokenPtr = TokenAfter(valueTokenPtr);
	}
	TclEmitInstInt4(INST_LIST, numWords - 1, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------







>
>




















<
<
<

<





|







3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216



3217

3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
    Tcl_Parse *parsePtr,	/* Points to a parse structure for the command
				 * created by Tcl_ParseCommand. */
    Command *cmdPtr,		/* Points to defintion of command being
				 * compiled. */
    CompileEnv *envPtr)		/* Holds resulting instructions. */
{
    DefineLineInformation;	/* TIP #280 */
    Tcl_Token *valueTokenPtr;
    int i, numWords;

    /*
     * If we're not in a procedure, don't compile.
     */

    if (envPtr->procPtr == NULL) {
	return TCL_ERROR;
    }

    if (parsePtr->numWords == 1) {
	/*
	 * [list] without arguments just pushes an empty object.
	 */

	PushLiteral(envPtr, "", 0);
    } else {
	/*
	 * Push the all values onto the stack.
	 */




	numWords = parsePtr->numWords;

	valueTokenPtr = TokenAfter(parsePtr->tokenPtr);
	for (i = 1; i < numWords; i++) {
	    CompileWord(envPtr, valueTokenPtr, interp, i);
	    valueTokenPtr = TokenAfter(valueTokenPtr);
	}
	TclEmitInstInt4(	INST_LIST, numWords - 1,	envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031

    if (parsePtr->numWords != 2) {
	return TCL_ERROR;
    }
    varTokenPtr = TokenAfter(parsePtr->tokenPtr);

    CompileWord(envPtr, varTokenPtr, interp, 1);
    TclEmitOpcode(INST_LIST_LENGTH, envPtr);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileLsetCmd --







|







3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272

    if (parsePtr->numWords != 2) {
	return TCL_ERROR;
    }
    varTokenPtr = TokenAfter(parsePtr->tokenPtr);

    CompileWord(envPtr, varTokenPtr, interp, 1);
    TclEmitOpcode(		INST_LIST_LENGTH,		envPtr);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileLsetCmd --
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207

    if (!simpleVarName || localIndex < 0) {
	if (!simpleVarName || isScalar) {
	    tempDepth = parsePtr->numWords - 2;
	} else {
	    tempDepth = parsePtr->numWords - 1;
	}
	TclEmitInstInt4(INST_OVER, tempDepth, envPtr);
    }

    /*
     * Duplicate an array index if one's been pushed.
     */

    if (simpleVarName && !isScalar) {
	if (localIndex < 0) {
	    tempDepth = parsePtr->numWords - 1;
	} else {
	    tempDepth = parsePtr->numWords - 2;
	}
	TclEmitInstInt4(INST_OVER, tempDepth, envPtr);
    }

    /*
     * Emit code to load the variable's value.
     */

    if (!simpleVarName) {
	TclEmitOpcode(INST_LOAD_STK, envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(INST_LOAD_SCALAR_STK, envPtr);
	} else if (localIndex < 0x100) {
	    TclEmitInstInt1(INST_LOAD_SCALAR1, localIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_LOAD_SCALAR4, localIndex, envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(INST_LOAD_ARRAY_STK, envPtr);
	} else if (localIndex < 0x100) {
	    TclEmitInstInt1(INST_LOAD_ARRAY1, localIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_LOAD_ARRAY4, localIndex, envPtr);
	}
    }

    /*
     * Emit the correct variety of 'lset' instruction.
     */

    if (parsePtr->numWords == 4) {
	TclEmitOpcode(INST_LSET_LIST, envPtr);
    } else {
	TclEmitInstInt4(INST_LSET_FLAT, parsePtr->numWords-1, envPtr);
    }

    /*
     * Emit code to put the value back in the variable.
     */

    if (!simpleVarName) {
	TclEmitOpcode(INST_STORE_STK, envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(INST_STORE_SCALAR_STK, envPtr);
	} else if (localIndex < 0x100) {
	    TclEmitInstInt1(INST_STORE_SCALAR1, localIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_STORE_SCALAR4, localIndex, envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(INST_STORE_ARRAY_STK, envPtr);
	} else if (localIndex < 0x100) {
	    TclEmitInstInt1(INST_STORE_ARRAY1, localIndex, envPtr);
	} else {
	    TclEmitInstInt4(INST_STORE_ARRAY4, localIndex, envPtr);
	}
    }

    return TCL_OK;
}

/*







|












|







|


|
<
<

|



|
<
<

|








|

|







|


|
<
<

|



|
<
<

|







3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395


3396
3397
3398
3399
3400
3401


3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425


3426
3427
3428
3429
3430
3431


3432
3433
3434
3435
3436
3437
3438
3439
3440

    if (!simpleVarName || localIndex < 0) {
	if (!simpleVarName || isScalar) {
	    tempDepth = parsePtr->numWords - 2;
	} else {
	    tempDepth = parsePtr->numWords - 1;
	}
	TclEmitInstInt4(	INST_OVER, tempDepth,		envPtr);
    }

    /*
     * Duplicate an array index if one's been pushed.
     */

    if (simpleVarName && !isScalar) {
	if (localIndex < 0) {
	    tempDepth = parsePtr->numWords - 1;
	} else {
	    tempDepth = parsePtr->numWords - 2;
	}
	TclEmitInstInt4(	INST_OVER, tempDepth,		envPtr);
    }

    /*
     * Emit code to load the variable's value.
     */

    if (!simpleVarName) {
	TclEmitOpcode(		INST_LOAD_STK,			envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_LOAD_SCALAR_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_LOAD_SCALAR, localIndex,	envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_LOAD_ARRAY_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_LOAD_ARRAY, localIndex,	envPtr);
	}
    }

    /*
     * Emit the correct variety of 'lset' instruction.
     */

    if (parsePtr->numWords == 4) {
	TclEmitOpcode(		INST_LSET_LIST,			envPtr);
    } else {
	TclEmitInstInt4(	INST_LSET_FLAT, parsePtr->numWords-1, envPtr);
    }

    /*
     * Emit code to put the value back in the variable.
     */

    if (!simpleVarName) {
	TclEmitOpcode(		INST_STORE_STK,			envPtr);
    } else if (isScalar) {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_STORE_SCALAR_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_STORE_SCALAR, localIndex,	envPtr);
	}
    } else {
	if (localIndex < 0) {
	    TclEmitOpcode(	INST_STORE_ARRAY_STK,		envPtr);


	} else {
	    Emit14Inst(		INST_STORE_ARRAY, localIndex,	envPtr);
	}
    }

    return TCL_OK;
}

/*
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
	CompileWord(envPtr, otherTokenPtr, interp, 1);
	PushVarNameWord(interp, localTokenPtr, envPtr, 0,
		&localIndex, &simpleVarName, &isScalar, 1);

	if ((localIndex < 0) || !isScalar) {
	    return TCL_ERROR;
	}
	TclEmitInstInt4(INST_NSUPVAR, localIndex, envPtr);
    }

    /*
     * Pop the namespace, and set the result to empty
     */

    TclEmitOpcode(INST_POP, envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *







|






|







3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
	CompileWord(envPtr, otherTokenPtr, interp, 1);
	PushVarNameWord(interp, localTokenPtr, envPtr, 0,
		&localIndex, &simpleVarName, &isScalar, 1);

	if ((localIndex < 0) || !isScalar) {
	    return TCL_ERROR;
	}
	TclEmitInstInt4(	INST_NSUPVAR, localIndex,	envPtr);
    }

    /*
     * Pop the namespace, and set the result to empty
     */

    TclEmitOpcode(		INST_POP,			envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
     */

    varTokenPtr = TokenAfter(varTokenPtr);
    CompileWord(envPtr, varTokenPtr, interp, parsePtr->numWords-1);

    if (simple) {
	if (exact && !nocase) {
	    TclEmitOpcode(INST_STR_EQ, envPtr);
	} else {
	    TclEmitInstInt1(INST_STR_MATCH, nocase, envPtr);
	}
    } else {
	/*
	 * Pass correct RE compile flags.  We use only Int1 (8-bit), but
	 * that handles all the flags we want to pass.
	 * Don't use TCL_REG_NOSUB as we may have backrefs.
	 */

	int cflags = TCL_REG_ADVANCED | (nocase ? TCL_REG_NOCASE : 0);

	TclEmitInstInt1(INST_REGEXP, cflags, envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------







|

|










|







3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
     */

    varTokenPtr = TokenAfter(varTokenPtr);
    CompileWord(envPtr, varTokenPtr, interp, parsePtr->numWords-1);

    if (simple) {
	if (exact && !nocase) {
	    TclEmitOpcode(	INST_STR_EQ,			envPtr);
	} else {
	    TclEmitInstInt1(	INST_STR_MATCH, nocase,		envPtr);
	}
    } else {
	/*
	 * Pass correct RE compile flags.  We use only Int1 (8-bit), but
	 * that handles all the flags we want to pass.
	 * Don't use TCL_REG_NOSUB as we may have backrefs.
	 */

	int cflags = TCL_REG_ADVANCED | (nocase ? TCL_REG_NOCASE : 0);

	TclEmitInstInt1(	INST_REGEXP, cflags,		envPtr);
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
    Tcl_Obj *msg = Tcl_GetObjResult(interp);
    int numBytes;
    const char *bytes = TclGetStringFromObj(msg, &numBytes);

    TclErrorStackResetIf(interp, bytes, numBytes);
    TclEmitPush(TclRegisterNewLiteral(envPtr, bytes, numBytes), envPtr);
    CompileReturnInternal(envPtr, INST_SYNTAX, TCL_ERROR, 0,
			  TclNoErrorStack(interp, Tcl_GetReturnOptions(interp, TCL_ERROR)));
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileUpvarCmd --
 *







|







3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
    Tcl_Obj *msg = Tcl_GetObjResult(interp);
    int numBytes;
    const char *bytes = TclGetStringFromObj(msg, &numBytes);

    TclErrorStackResetIf(interp, bytes, numBytes);
    TclEmitPush(TclRegisterNewLiteral(envPtr, bytes, numBytes), envPtr);
    CompileReturnInternal(envPtr, INST_SYNTAX, TCL_ERROR, 0,
	    TclNoErrorStack(interp, Tcl_GetReturnOptions(interp, TCL_ERROR)));
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileUpvarCmd --
 *
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
	CompileWord(envPtr, otherTokenPtr, interp, 1);
	PushVarNameWord(interp, localTokenPtr, envPtr, 0,
		&localIndex, &simpleVarName, &isScalar, 1);

	if ((localIndex < 0) || !isScalar) {
	    return TCL_ERROR;
	}
	TclEmitInstInt4(INST_UPVAR, localIndex, envPtr);
    }

    /*
     * Pop the frame index, and set the result to empty
     */

    TclEmitOpcode(INST_POP, envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *







|






|







3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
	CompileWord(envPtr, otherTokenPtr, interp, 1);
	PushVarNameWord(interp, localTokenPtr, envPtr, 0,
		&localIndex, &simpleVarName, &isScalar, 1);

	if ((localIndex < 0) || !isScalar) {
	    return TCL_ERROR;
	}
	TclEmitInstInt4(	INST_UPVAR, localIndex,		envPtr);
    }

    /*
     * Pop the frame index, and set the result to empty
     */

    TclEmitOpcode(		INST_POP,			envPtr);
    PushLiteral(envPtr, "", 0);
    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
	localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);

	if (localIndex < 0) {
	    return TCL_ERROR;
	}

	CompileWord(envPtr, varTokenPtr, interp, 1);
	TclEmitInstInt4(INST_VARIABLE, localIndex, envPtr);

	if (i != numWords) {
	    /*
	     * A value has been given: set the variable, pop the value
	     */

	    CompileWord(envPtr, valueTokenPtr, interp, 1);
	    if (localIndex < 0x100) {
		TclEmitInstInt1(INST_STORE_SCALAR1, localIndex, envPtr);
	    } else {
		TclEmitInstInt4(INST_STORE_SCALAR4, localIndex, envPtr);
	    }
	    TclEmitOpcode(INST_POP, envPtr);
	}
    }

    /*
     * Set the result to empty
     */








|







<
|
<
<
<
|







4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059

4060



4061
4062
4063
4064
4065
4066
4067
4068
	localIndex = IndexTailVarIfKnown(interp, varTokenPtr, envPtr);

	if (localIndex < 0) {
	    return TCL_ERROR;
	}

	CompileWord(envPtr, varTokenPtr, interp, 1);
	TclEmitInstInt4(	INST_VARIABLE, localIndex,	envPtr);

	if (i != numWords) {
	    /*
	     * A value has been given: set the variable, pop the value
	     */

	    CompileWord(envPtr, valueTokenPtr, interp, 1);

	    Emit14Inst(		INST_STORE_SCALAR, localIndex,	envPtr);



	    TclEmitOpcode(	INST_POP,			envPtr);
	}
    }

    /*
     * Set the result to empty
     */

Changes to generic/tclCompExpr.c.

163
164
165
166
167
168
169
170


171

172

173

174

175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#define INCOMPLETE	4	/* A parse error. Used only when the single
				 * "=" is encountered.  */
#define INVALID		5	/* A parse error. Used when any punctuation
				 * appears that's not a supported operator. */

/* Leaf lexemes */

#define NUMBER		( LEAF | 1)	/* For literal numbers */


#define SCRIPT		( LEAF | 2)	/* Script substitution; [foo] */

#define BOOLEAN		( LEAF | BAREWORD)	/* For literal booleans */

#define BRACED		( LEAF | 4)	/* Braced string; {foo bar} */

#define VARIABLE	( LEAF | 5)	/* Variable substitution; $x */

#define QUOTED		( LEAF | 6)	/* Quoted string; "foo $bar [soom]" */

#define EMPTY		( LEAF | 7)	/* Used only for an empty argument
					 * list to a function. Represents the
					 * empty string within parens in the
					 * expression: rand() */

/* Unary operator lexemes */

#define UNARY_PLUS	( UNARY | PLUS)
#define UNARY_MINUS	( UNARY | MINUS)
#define FUNCTION	( UNARY | BAREWORD)	/* This is a bit of "creative
					 * interpretation" on the part of the
					 * parser. A function call is parsed
					 * into the parse tree according to
					 * the perspective that the function
					 * name is a unary operator and its
					 * argument list, enclosed in parens,
					 * is its operand. The additional
					 * requirements not implied generally
					 * by treatment as a unary operator --
					 * for example, the requirement that
					 * the operand be enclosed in parens
					 * -- are hard coded in the relevant
					 * portions of ParseExpr(). We trade
					 * off the need to include such
					 * exceptional handling in the code
					 * against the need we would otherwise
					 * have for more lexeme categories. */

#define START		( UNARY | 4)	/* This lexeme isn't parsed from the
					 * expression text at all. It
					 * represents the start of the
					 * expression and sits at the root of
					 * the parse tree where it serves as
					 * the start/end point of
					 * traversals. */
#define OPEN_PAREN	( UNARY | 5)	/* Another bit of creative
					 * interpretation, where we treat "("
					 * as a unary operator with the
					 * sub-expression between it and its
					 * matching ")" as its operand. See
					 * CLOSE_PAREN below. */
#define NOT		( UNARY | 6)
#define BIT_NOT		( UNARY | 7)

/* Binary operator lexemes */

#define BINARY_PLUS	( BINARY |  PLUS)
#define BINARY_MINUS	( BINARY |  MINUS)
#define COMMA		( BINARY |  3)	/* The "," operator is a low
					 * precedence binary operator that
					 * separates the arguments in a
					 * function call. The additional
					 * constraint that this operator can
					 * only legally appear at the right
					 * places within a function call
					 * argument list are hard coded within
					 * ParseExpr().  */
#define MULT		( BINARY |  4)
#define DIVIDE		( BINARY |  5)
#define MOD		( BINARY |  6)
#define LESS		( BINARY |  7)
#define GREATER		( BINARY |  8)
#define BIT_AND		( BINARY |  9)
#define BIT_XOR		( BINARY | 10)
#define BIT_OR		( BINARY | 11)

#define QUESTION	( BINARY | 12)	/* These two lexemes make up the */
#define COLON		( BINARY | 13)	/* ternary conditional operator,
					 * $x ? $y : $z . We treat them as two
					 * binary operators to avoid another
					 * lexeme category, and code the
					 * additional constraints directly in
					 * ParseExpr(). For instance, the
					 * right operand of a "?" operator
					 * must be a ":" operator. */
#define LEFT_SHIFT	( BINARY | 14)
#define RIGHT_SHIFT	( BINARY | 15)
#define LEQ		( BINARY | 16)
#define GEQ		( BINARY | 17)
#define EQUAL		( BINARY | 18)
#define NEQ		( BINARY | 19)
#define AND		( BINARY | 20)
#define OR		( BINARY | 21)
#define STREQ		( BINARY | 22)
#define STRNEQ		( BINARY | 23)

#define EXPON		( BINARY | 24)	/* Unlike the other binary operators,
					 * EXPON is right associative and this
					 * distinction is coded directly in
					 * ParseExpr(). */
#define IN_LIST		( BINARY | 25)
#define NOT_IN_LIST	( BINARY | 26)
#define CLOSE_PAREN	( BINARY | 27)	/* By categorizing the CLOSE_PAREN
					 * lexeme as a BINARY operator, the
					 * normal parsing rules for binary
					 * operators assure that a close paren
					 * will not directly follow another
					 * operator, and the machinery already
					 * in place to connect operands to
					 * operators according to precedence
					 * performs most of the work of
					 * matching open and close parens for
					 * us. In the end though, a close
					 * paren is not really a binary
					 * operator, and some special coding
					 * in ParseExpr() make sure we never
					 * put an actual CLOSE_PAREN node in
					 * the parse tree. The sub-expression
					 * between parens becomes the single
					 * argument of the matching OPEN_PAREN
					 * unary operator. */

#define END		( BINARY | 28)	/* This lexeme represents the end of
					 * the string being parsed. Treating
					 * it as a binary operator follows the
					 * same logic as the CLOSE_PAREN
					 * lexeme and END pairs with START, in
					 * the same way that CLOSE_PAREN pairs
					 * with OPEN_PAREN. */

/*
 * When ParseExpr() builds the parse tree it must choose which operands to
 * connect to which operators.  This is done according to operator precedence.
 * The greater an operator's precedence the greater claim it has to link to
 * an available operand.  The Precedence enumeration lists the precedence
 * values used by Tcl expression operators, from lowest to highest claim.
 * Each precedence level is commented with the operators that hold that
 * precedence.
 */

enum Precedence {
    PREC_END = 1,	/* END */
    PREC_START,		/* START */
    PREC_CLOSE_PAREN,	/* ")" */
    PREC_OPEN_PAREN,	/* "(" */







|
>
>
|
>
|
>
|
>
|
>
|
>
|
|
<
|



|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
<
|
|
|
>
|
|
<
|
|
|
<
|
|
|
|
|
|
|
|



|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
<
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
<
|
|
|
|
<
|
>
|
|
|
<
|
|
|
>



|
|
|
|
<







163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203

204
205
206
207
208
209

210
211
212

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271
272
273
274
275

276
277
278

279
280
281
282

283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
#define INCOMPLETE	4	/* A parse error. Used only when the single
				 * "=" is encountered.  */
#define INVALID		5	/* A parse error. Used when any punctuation
				 * appears that's not a supported operator. */

/* Leaf lexemes */

#define NUMBER		(LEAF | 1)
				/* For literal numbers */
#define SCRIPT		(LEAF | 2)
				/* Script substitution; [foo] */
#define BOOLEAN		(LEAF | BAREWORD)
				/* For literal booleans */
#define BRACED		(LEAF | 4)
				/* Braced string; {foo bar} */
#define VARIABLE	(LEAF | 5)
				/* Variable substitution; $x */
#define QUOTED		(LEAF | 6)
				/* Quoted string; "foo $bar [soom]" */
#define EMPTY		(LEAF | 7)
				/* Used only for an empty argument list to a
				 * function. Represents the empty string

				 * within parens in the expression: rand() */

/* Unary operator lexemes */

#define UNARY_PLUS	(UNARY | PLUS)
#define UNARY_MINUS	(UNARY | MINUS)
#define FUNCTION	(UNARY | BAREWORD)
				/* This is a bit of "creative interpretation"
				 * on the part of the parser. A function call
				 * is parsed into the parse tree according to
				 * the perspective that the function name is a
				 * unary operator and its argument list,
				 * enclosed in parens, is its operand. The

				 * additional requirements not implied
				 * generally by treatment as a unary operator
				 * -- for example, the requirement that the
				 * operand be enclosed in parens -- are hard
				 * coded in the relevant portions of
				 * ParseExpr(). We trade off the need to

				 * include such exceptional handling in the
				 * code against the need we would otherwise
				 * have for more lexeme categories. */
#define START		(UNARY | 4)
				/* This lexeme isn't parsed from the
				 * expression text at all. It represents the

				 * start of the expression and sits at the
				 * root of the parse tree where it serves as
				 * the start/end point of traversals. */

#define OPEN_PAREN	(UNARY | 5)
				/* Another bit of creative interpretation,
				 * where we treat "(" as a unary operator with
				 * the sub-expression between it and its
				 * matching ")" as its operand. See
				 * CLOSE_PAREN below. */
#define NOT		(UNARY | 6)
#define BIT_NOT		(UNARY | 7)

/* Binary operator lexemes */

#define BINARY_PLUS	(BINARY |  PLUS)
#define BINARY_MINUS	(BINARY |  MINUS)
#define COMMA		(BINARY |  3)
				/* The "," operator is a low precedence binary
				 * operator that separates the arguments in a
				 * function call. The additional constraint
				 * that this operator can only legally appear

				 * at the right places within a function call
				 * argument list are hard coded within
				 * ParseExpr().  */
#define MULT		(BINARY |  4)
#define DIVIDE		(BINARY |  5)
#define MOD		(BINARY |  6)
#define LESS		(BINARY |  7)
#define GREATER		(BINARY |  8)
#define BIT_AND		(BINARY |  9)
#define BIT_XOR		(BINARY | 10)
#define BIT_OR		(BINARY | 11)
#define QUESTION	(BINARY | 12)
				/* These two lexemes make up the */
#define COLON		(BINARY | 13)
				/* ternary conditional operator, $x ? $y : $z.
				 * We treat them as two binary operators to
				 * avoid another lexeme category, and code the
				 * additional constraints directly in
				 * ParseExpr(). For instance, the right
				 * operand of a "?" operator must be a ":"
				 * operator. */
#define LEFT_SHIFT	(BINARY | 14)
#define RIGHT_SHIFT	(BINARY | 15)
#define LEQ		(BINARY | 16)
#define GEQ		(BINARY | 17)
#define EQUAL		(BINARY | 18)
#define NEQ		(BINARY | 19)
#define AND		(BINARY | 20)
#define OR		(BINARY | 21)
#define STREQ		(BINARY | 22)
#define STRNEQ		(BINARY | 23)
#define EXPON		(BINARY | 24)
				/* Unlike the other binary operators, EXPON is
				 * right associative and this distinction is

				 * coded directly in ParseExpr(). */
#define IN_LIST		(BINARY | 25)
#define NOT_IN_LIST	(BINARY | 26)
#define CLOSE_PAREN	(BINARY | 27)
				/* By categorizing the CLOSE_PAREN lexeme as a
				 * BINARY operator, the normal parsing rules
				 * for binary operators assure that a close
				 * paren will not directly follow another
				 * operator, and the machinery already in
				 * place to connect operands to operators
				 * according to precedence performs most of

				 * the work of matching open and close parens
				 * for us. In the end though, a close paren is
				 * not really a binary operator, and some

				 * special coding in ParseExpr() make sure we
				 * never put an actual CLOSE_PAREN node in the
				 * parse tree. The sub-expression between
				 * parens becomes the single argument of the

				 * matching OPEN_PAREN unary operator. */
#define END		(BINARY | 28)
				/* This lexeme represents the end of the
				 * string being parsed. Treating it as a
				 * binary operator follows the same logic as

				 * the CLOSE_PAREN lexeme and END pairs with
				 * START, in the same way that CLOSE_PAREN
				 * pairs with OPEN_PAREN. */

/*
 * When ParseExpr() builds the parse tree it must choose which operands to
 * connect to which operators.  This is done according to operator precedence.
 * The greater an operator's precedence the greater claim it has to link to an
 * available operand.  The Precedence enumeration lists the precedence values
 * used by Tcl expression operators, from lowest to highest claim.  Each
 * precedence level is commented with the operators that hold that precedence.

 */

enum Precedence {
    PREC_END = 1,	/* END */
    PREC_START,		/* START */
    PREC_CLOSE_PAREN,	/* ")" */
    PREC_OPEN_PAREN,	/* "(" */
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    PREC_ADD,		/* "+", "-" */
    PREC_MULT,		/* "*", "/", "%" */
    PREC_EXPON,		/* "**" */
    PREC_UNARY		/* "+", "-", FUNCTION, "!", "~" */
};

/*
 * Here the same information contained in the comments above is stored
 * in inverted form, so that given a lexeme, one can quickly look up 
 * its precedence value.
 */

static const unsigned char prec[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,







|
|
|







316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    PREC_ADD,		/* "+", "-" */
    PREC_MULT,		/* "*", "/", "%" */
    PREC_EXPON,		/* "**" */
    PREC_UNARY		/* "+", "-", FUNCTION, "!", "~" */
};

/*
 * Here the same information contained in the comments above is stored in
 * inverted form, so that given a lexeme, one can quickly look up its
 * precedence value.
 */

static const unsigned char prec[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
595
596
597
598
599
600
601

602


603
604
605
606
607
608
609
				 * moment. OT_EMPTY is a nonsense value used
				 * only to silence compiler warnings. During a
				 * parse, complete will always hold an index
				 * or an OperandTypes value pointing to an
				 * actual leaf at the time the complete tree
				 * is needed. */


    /* These variables control generation of the error message. */


    Tcl_Obj *msg = NULL;	/* The error message. */
    Tcl_Obj *post = NULL;	/* In a few cases, an additional postscript
				 * for the error message, supplying more
				 * information after the error msg and
				 * location have been reported. */
    const char *errCode = NULL;	/* The detail word of the errorCode list, or
				 * NULL to indicate that no changes to the







>
|
>
>







595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
				 * moment. OT_EMPTY is a nonsense value used
				 * only to silence compiler warnings. During a
				 * parse, complete will always hold an index
				 * or an OperandTypes value pointing to an
				 * actual leaf at the time the complete tree
				 * is needed. */

    /*
     * These variables control generation of the error message.
     */

    Tcl_Obj *msg = NULL;	/* The error message. */
    Tcl_Obj *post = NULL;	/* In a few cases, an additional postscript
				 * for the error message, supplying more
				 * information after the error msg and
				 * location have been reported. */
    const char *errCode = NULL;	/* The detail word of the errorCode list, or
				 * NULL to indicate that no changes to the
797
798
799
800
801
802
803

804


805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

831


832
833
834
835
836
837
838
		    lexeme |= UNARY;
		} else {
		    lexeme |= BINARY;
		}
	    }
	}	/* Uncategorized lexemes */


	/* Handle lexeme based on its category. */


	switch (NODE_TYPE & lexeme) {

	/*
	 * Each LEAF results in either a literal getting appended to the
	 * litList, or a sequence of Tcl_Tokens representing a Tcl word
	 * getting appended to the parsePtr->tokens. No OpNode is filled for
	 * this lexeme.
	 */

	case LEAF: {
	    Tcl_Token *tokenPtr;
	    const char *end = start;
	    int wordIndex;
	    int code = TCL_OK;

	    /*
	     * A leaf operand appearing just after something that's not an
	     * operator is a syntax error.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		errCode = "MISSING";
		scanned = 0;
		insertMark = 1;


		/* Free any literal to avoid a memleak. */


		if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) {
		    Tcl_DecrRefCount(literal);
		}
		goto error;
	    }

	    switch (lexeme) {







>
|
>
>

|
|
|
|
|
|
|

<
















>
|
>
>







800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
		    lexeme |= UNARY;
		} else {
		    lexeme |= BINARY;
		}
	    }
	}	/* Uncategorized lexemes */

	/*
	 * Handle lexeme based on its category.
	 */

	switch (NODE_TYPE & lexeme) {
	case LEAF: {
	    /*
	     * Each LEAF results in either a literal getting appended to the
	     * litList, or a sequence of Tcl_Tokens representing a Tcl word
	     * getting appended to the parsePtr->tokens. No OpNode is filled
	     * for this lexeme.
	     */


	    Tcl_Token *tokenPtr;
	    const char *end = start;
	    int wordIndex;
	    int code = TCL_OK;

	    /*
	     * A leaf operand appearing just after something that's not an
	     * operator is a syntax error.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		errCode = "MISSING";
		scanned = 0;
		insertMark = 1;

		/*
		 * Free any literal to avoid a memleak.
		 */

		if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) {
		    Tcl_DecrRefCount(literal);
		}
		goto error;
	    }

	    switch (lexeme) {
1023
1024
1025
1026
1027
1028
1029

1030


1031
1032
1033
1034
1035
1036
1037
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		scanned = 0;
		insertMark = 1;
		errCode = "MISSING";
		goto error;
	    }


	    /* Create an OpNode for the unary operator */


	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = prec[lexeme];
	    nodePtr->mark = MARK_RIGHT;

	    /*
	     * A FUNCTION cannot be a constant expression, because Tcl allows
	     * functions to return variable results with the same arguments;







>
|
>
>







1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		scanned = 0;
		insertMark = 1;
		errCode = "MISSING";
		goto error;
	    }

	    /*
	     * Create an OpNode for the unary operator.
	     */

	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = prec[lexeme];
	    nodePtr->mark = MARK_RIGHT;

	    /*
	     * A FUNCTION cannot be a constant expression, because Tcl allows
	     * functions to return variable results with the same arguments;
1494
1495
1496
1497
1498
1499
1500

1501


1502
1503
1504
1505
1506
1507
1508
	case OT_EMPTY:

	    /* No tokens and no characters for the OT_EMPTY leaf. */
	    break;

	case OT_LITERAL:


	    /* Skip any white space that comes before the literal */


	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Reparse the literal to get pointers into source string.
	     */







>
|
>
>







1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
	case OT_EMPTY:

	    /* No tokens and no characters for the OT_EMPTY leaf. */
	    break;

	case OT_LITERAL:

	    /*
	     * Skip any white space that comes before the literal.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Reparse the literal to get pointers into source string.
	     */
1577
1578
1579
1580
1581
1582
1583

1584


1585
1586
1587
1588
1589
1590
1591
	    numBytes -= scanned;
	    tokenPtr += toCopy;
	    break;
	}

	default:


	    /* Advance to the child node, which is an operator. */


	    nodePtr = nodes + next;

	    /*
	     * Skip any white space that comes before the subexpression.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);







>
|
>
>







1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
	    numBytes -= scanned;
	    tokenPtr += toCopy;
	    break;
	}

	default:

	    /*
	     * Advance to the child node, which is an operator.
	     */

	    nodePtr = nodes + next;

	    /*
	     * Skip any white space that comes before the subexpression.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
1658
1659
1660
1661
1662
1663
1664

1665


1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682


1683
1684
1685
1686
1687
1688
1689
	case MARK_LEFT:
	    next = nodePtr->left;
	    break;

	case MARK_RIGHT:
	    next = nodePtr->right;


	    /* Skip any white space that comes before the operator */


	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Here we scan from the string the operator corresponding to
	     * nodePtr->lexeme.
	     */

	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    switch(nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:


		/* No tokens for these lexemes -> nothing to do. */


		break;

	    default:

		/*
		 * Record in the TCL_TOKEN_OPERATOR token the pointers into
		 * the string marking where the operator is.







>
|
>
>
















>
|
>
>







1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
	case MARK_LEFT:
	    next = nodePtr->left;
	    break;

	case MARK_RIGHT:
	    next = nodePtr->right;

	    /*
	     * Skip any white space that comes before the operator.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Here we scan from the string the operator corresponding to
	     * nodePtr->lexeme.
	     */

	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    switch(nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:

		/*
		 * No tokens for these lexemes -> nothing to do.
		 */

		break;

	    default:

		/*
		 * Record in the TCL_TOKEN_OPERATOR token the pointers into
		 * the string marking where the operator is.
1710
1711
1712
1713
1714
1715
1716

1717


1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
	    case COLON:

		/* No tokens for these lexemes -> nothing to do. */
		break;

	    case OPEN_PAREN:


		/* Skip past matching close paren. */


		scanned = TclParseAllWhiteSpace(start, numBytes);
		start += scanned;
		numBytes -= scanned;
		scanned = ParseLexeme(start, numBytes, &lexeme, NULL);
		start += scanned;
		numBytes -= scanned;
		break;

	    default: {

		/*
		 * Before we leave this node/operator/subexpression for the
		 * last time, finish up its tokens....
		 * 
		 * Our current position scanning the string is where the
		 * substring for the subexpression ends.







>
|
>
>








|







1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
	    case COLON:

		/* No tokens for these lexemes -> nothing to do. */
		break;

	    case OPEN_PAREN:

		/*
		 * Skip past matching close paren.
		 */

		scanned = TclParseAllWhiteSpace(start, numBytes);
		start += scanned;
		numBytes -= scanned;
		scanned = ParseLexeme(start, numBytes, &lexeme, NULL);
		start += scanned;
		numBytes -= scanned;
		break;

	    default:

		/*
		 * Before we leave this node/operator/subexpression for the
		 * last time, finish up its tokens....
		 * 
		 * Our current position scanning the string is where the
		 * substring for the subexpression ends.
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
		 * fill in the zero numComponents for the operator Tcl_Token.
		 */

		parentIdx = subExprTokenPtr[1].numComponents;
		subExprTokenPtr[1].numComponents = 0;
		subExprTokenIdx = parentIdx;
		break;
	    }
	    }

	    /*
	     * Since we're returning to parent, skip child handling code.
	     */

	    nodePtr = nodes + nodePtr->p.parent;







<







1778
1779
1780
1781
1782
1783
1784

1785
1786
1787
1788
1789
1790
1791
		 * fill in the zero numComponents for the operator Tcl_Token.
		 */

		parentIdx = subExprTokenPtr[1].numComponents;
		subExprTokenPtr[1].numComponents = 0;
		subExprTokenIdx = parentIdx;
		break;

	    }

	    /*
	     * Since we're returning to parent, skip child handling code.
	     */

	    nodePtr = nodes + nodePtr->p.parent;
2005
2006
2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

2031
2032
2033
2034
2035
2036
2037
	     * (alpha, digit, underscore).  Is this a number followed by
	     * bareword syntax error?  Or should we join into one bareword?
	     * Example: Inf + luence + () becomes a valid function call.
	     * [Bug 3401704]
	     */
	    if (literal->typePtr == &tclDoubleType) {
		const char *p = start;

		while (p < end) {
		    if (!isalnum(UCHAR(*p++))) {
			/*
			 * The number has non-bareword characters, so we 
			 * must treat it as a number.
			 */
			goto number;
		    }
		}
	    }
	    ParseLexeme(end, numBytes-(end-start), &lexeme, NULL);
	    if ((NODE_TYPE & lexeme) == BINARY) {
		/*
		 * The bareword characters following the number take the
		 * form of an operator (eq, ne, in, ni, ...) so we treat
		 * as number + operator.
		 */
		goto number;
	    }

	    /*
	     * Otherwise, fall through and parse the whole as a bareword.
	     */
	}
    }

    if (Tcl_UtfCharComplete(start, numBytes)) {







>



















>







2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
	     * (alpha, digit, underscore).  Is this a number followed by
	     * bareword syntax error?  Or should we join into one bareword?
	     * Example: Inf + luence + () becomes a valid function call.
	     * [Bug 3401704]
	     */
	    if (literal->typePtr == &tclDoubleType) {
		const char *p = start;

		while (p < end) {
		    if (!isalnum(UCHAR(*p++))) {
			/*
			 * The number has non-bareword characters, so we 
			 * must treat it as a number.
			 */
			goto number;
		    }
		}
	    }
	    ParseLexeme(end, numBytes-(end-start), &lexeme, NULL);
	    if ((NODE_TYPE & lexeme) == BINARY) {
		/*
		 * The bareword characters following the number take the
		 * form of an operator (eq, ne, in, ni, ...) so we treat
		 * as number + operator.
		 */
		goto number;
	    }

	    /*
	     * Otherwise, fall through and parse the whole as a bareword.
	     */
	}
    }

    if (Tcl_UtfCharComplete(start, numBytes)) {
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
		 */

		nodePtr->left = numWords;
		numWords = 2;	/* Command plus one argument */
		break;
	    }
	    case QUESTION:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump));
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&(jumpPtr->next->jump));
		envPtr->currStackDepth = jumpPtr->depth;
		jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart);
		jumpPtr->convert = convert;
		convert = 1;
		break;
	    case AND:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump));
		break;
	    case OR:
		TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &(jumpPtr->jump));
		break;
	    }
	} else {
	    switch (nodePtr->lexeme) {
	    case START:
	    case QUESTION:
		if (convert && (nodePtr == rootPtr)) {







|




|






|


|







2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
		 */

		nodePtr->left = numWords;
		numWords = 2;	/* Command plus one argument */
		break;
	    }
	    case QUESTION:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpPtr->jump);
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&jumpPtr->next->jump);
		envPtr->currStackDepth = jumpPtr->depth;
		jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart);
		jumpPtr->convert = convert;
		convert = 1;
		break;
	    case AND:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpPtr->jump);
		break;
	    case OR:
		TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &jumpPtr->jump);
		break;
	    }
	} else {
	    switch (nodePtr->lexeme) {
	    case START:
	    case QUESTION:
		if (convert && (nodePtr == rootPtr)) {
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404

2405
2406
2407
2408
2409
2410
2411
		 * Each comma implies another function argument.
		 */

		numWords++;
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		if (TclFixupForwardJump(envPtr, &(jumpPtr->next->jump),
			(envPtr->codeNext - envPtr->codeStart)
			- jumpPtr->next->jump.codeOffset, 127)) {
		    jumpPtr->offset += 3;
		}
		TclFixupForwardJump(envPtr, &(jumpPtr->jump),
			jumpPtr->offset - jumpPtr->jump.codeOffset, 127);
		convert |= jumpPtr->convert;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    case AND:
	    case OR:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND)
			?  TCL_FALSE_JUMP : TCL_TRUE_JUMP,
			&(jumpPtr->next->jump));
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&(jumpPtr->next->next->jump));
		TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->jump), 127);
		if (TclFixupForwardJumpToHere(envPtr, &(jumpPtr->jump), 127)) {
		    jumpPtr->next->next->jump.codeOffset += 3;
		}
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr);
		TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->next->jump),
			127);
		convert = 0;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    default:
		TclEmitOpcode(instruction[nodePtr->lexeme], envPtr);
		convert = 0;
		break;
	    }
	    if (nodePtr == rootPtr) {

		/* We're done */

		return;
	    }
	    nodePtr = nodes + nodePtr->p.parent;
	    continue;
	}

	nodePtr->mark++;







|




|















|



|
|
|




|



















<

>







2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430
2431
2432
2433
2434
2435
2436
2437
2438
		 * Each comma implies another function argument.
		 */

		numWords++;
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		if (TclFixupForwardJump(envPtr, &jumpPtr->next->jump,
			(envPtr->codeNext - envPtr->codeStart)
			- jumpPtr->next->jump.codeOffset, 127)) {
		    jumpPtr->offset += 3;
		}
		TclFixupForwardJump(envPtr, &jumpPtr->jump,
			jumpPtr->offset - jumpPtr->jump.codeOffset, 127);
		convert |= jumpPtr->convert;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    case AND:
	    case OR:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND)
			?  TCL_FALSE_JUMP : TCL_TRUE_JUMP,
			&jumpPtr->next->jump);
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&jumpPtr->next->next->jump);
		TclFixupForwardJumpToHere(envPtr, &jumpPtr->next->jump, 127);
		if (TclFixupForwardJumpToHere(envPtr, &jumpPtr->jump, 127)) {
		    jumpPtr->next->next->jump.codeOffset += 3;
		}
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr);
		TclFixupForwardJumpToHere(envPtr, &jumpPtr->next->next->jump,
			127);
		convert = 0;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    default:
		TclEmitOpcode(instruction[nodePtr->lexeme], envPtr);
		convert = 0;
		break;
	    }
	    if (nodePtr == rootPtr) {

		/* We're done */

		return;
	    }
	    nodePtr = nodes + nodePtr->p.parent;
	    continue;
	}

	nodePtr->mark++;
2474
2475
2476
2477
2478
2479
2480

2481
2482
2483
2484
2485
2486
2487
2488

2489


2490
2491
2492
2493
2494
2495
2496
		    int index;
		    Tcl_Obj *objPtr = Tcl_GetObjResult(interp);

		    /*
		     * Don't generate a string rep, but if we have one
		     * already, then use it to share via the literal table.
		     */

		    if (objPtr->bytes) {
			Tcl_Obj *tableValue;

			index = TclRegisterNewLiteral(envPtr, objPtr->bytes,
				objPtr->length);
			tableValue = envPtr->literalArrayPtr[index].objPtr;
			if ((tableValue->typePtr == NULL) &&
				(objPtr->typePtr != NULL)) {

			    /* Same intrep surgery as for OT_LITERAL */


			    tableValue->typePtr = objPtr->typePtr;
			    tableValue->internalRep = objPtr->internalRep;
			    objPtr->typePtr = NULL;
			}
		    } else {
			index = TclAddLiteralObj(envPtr, objPtr, NULL);
		    }







>








>
|
>
>







2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
		    int index;
		    Tcl_Obj *objPtr = Tcl_GetObjResult(interp);

		    /*
		     * Don't generate a string rep, but if we have one
		     * already, then use it to share via the literal table.
		     */

		    if (objPtr->bytes) {
			Tcl_Obj *tableValue;

			index = TclRegisterNewLiteral(envPtr, objPtr->bytes,
				objPtr->length);
			tableValue = envPtr->literalArrayPtr[index].objPtr;
			if ((tableValue->typePtr == NULL) &&
				(objPtr->typePtr != NULL)) {
			    /*
			     * Same intrep surgery as for OT_LITERAL.
			     */

			    tableValue->typePtr = objPtr->typePtr;
			    tableValue->internalRep = objPtr->internalRep;
			    objPtr->typePtr = NULL;
			}
		    } else {
			index = TclAddLiteralObj(envPtr, objPtr, NULL);
		    }
2507
2508
2509
2510
2511
2512
2513

2514
2515
2516
2517
2518
2519
2520
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclSingleOpCmd --

 *	Implements the commands: ~, !, <<, >>, %, !=, ne, in, ni
 *	in the ::tcl::mathop namespace.  These commands have no
 *	extension to arbitrary arguments; they accept only exactly one
 *	or exactly two arguments as suitable for the operator.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.







>







2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclSingleOpCmd --
 *
 *	Implements the commands: ~, !, <<, >>, %, !=, ne, in, ni
 *	in the ::tcl::mathop namespace.  These commands have no
 *	extension to arbitrary arguments; they accept only exactly one
 *	or exactly two arguments as suitable for the operator.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = clientData;
    unsigned char lexeme;
    OpNode nodes[2];
    Tcl_Obj *const *litObjv = objv + 1;

    if (objc != 1+occdPtr->i.numArgs) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    nodes[0].lexeme = START;
    nodes[0].mark = MARK_RIGHT;







|







2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = clientData;
    unsigned char lexeme;
    OpNode nodes[2];
    Tcl_Obj *const *litObjv = objv + 1;

    if (objc != 1 + occdPtr->i.numArgs) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    nodes[0].lexeme = START;
    nodes[0].mark = MARK_RIGHT;

Changes to generic/tclCompile.c.

416
417
418
419
420
421
422














423
424
425
426
427
428
429
	 * stktop; op1 is 1 for errors on problems, 0 otherwise */
    {"unsetArrayStk",	 2,    -2,        1,	{OPERAND_UINT1}},
	/* Make array element cease to exist; element is stktop, array name is
	 * stknext; op1 is 1 for errors on problems, 0 otherwise */
    {"unsetStk",	 2,    -1,        1,	{OPERAND_UINT1}},
	/* Make general variable cease to exist; unparsed variable name is
	 * stktop; op1 is 1 for errors on problems, 0 otherwise */















    {NULL, 0, 0, 0, {OPERAND_NONE}}
};

/*
 * Prototypes for procedures defined later in this file:
 */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
	 * stktop; op1 is 1 for errors on problems, 0 otherwise */
    {"unsetArrayStk",	 2,    -2,        1,	{OPERAND_UINT1}},
	/* Make array element cease to exist; element is stktop, array name is
	 * stknext; op1 is 1 for errors on problems, 0 otherwise */
    {"unsetStk",	 2,    -1,        1,	{OPERAND_UINT1}},
	/* Make general variable cease to exist; unparsed variable name is
	 * stktop; op1 is 1 for errors on problems, 0 otherwise */

    {"dictExpand",       1,    -1,        0,    {OPERAND_NONE}},
        /* Probe into a dict and extract it (or a subdict of it) into
         * variables with matched names. Produces list of keys bound as
         * result. Part of [dict with].
	 * Stack:  ... dict path => ... keyList */
    {"dictRecombineStk", 1,    -3,        0,    {OPERAND_NONE}},
        /* Map variable contents back into a dictionary in a variable. Part of
         * [dict with].
	 * Stack:  ... dictVarName path keyList => ... */
    {"dictRecombineImm", 1,    -2,        1,    {OPERAND_LVT4}},
        /* Map variable contents back into a dictionary in the local variable
         * indicated by the LVT index. Part of [dict with].
	 * Stack:  ... path keyList => ... */

    {NULL, 0, 0, 0, {OPERAND_NONE}}
};

/*
 * Prototypes for procedures defined later in this file:
 */

Changes to generic/tclCompile.h.

672
673
674
675
676
677
678





679
680
681
682
683
684
685
686
687

/* For [unset] compilation */
#define INST_UNSET_SCALAR		134
#define INST_UNSET_ARRAY		135
#define INST_UNSET_ARRAY_STK		136
#define INST_UNSET_STK			137






/* The last opcode */
#define LAST_INST_OPCODE		137

/*
 * Table describing the Tcl bytecode instructions: their name (for displaying
 * code), total number of code bytes required (including operand bytes), and a
 * description of the type of each operand. These operand types include signed
 * and unsigned integers of length one and four bytes. The unsigned integers
 * are used for indexes or for, e.g., the count of objects to push in a "push"







>
>
>
>
>

|







672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

/* For [unset] compilation */
#define INST_UNSET_SCALAR		134
#define INST_UNSET_ARRAY		135
#define INST_UNSET_ARRAY_STK		136
#define INST_UNSET_STK			137

/* For [dict with] compilation */
#define INST_DICT_EXPAND		138
#define INST_DICT_RECOMBINE_STK		139
#define INST_DICT_RECOMBINE_IMM		140

/* The last opcode */
#define LAST_INST_OPCODE		140

/*
 * Table describing the Tcl bytecode instructions: their name (for displaying
 * code), total number of code bytes required (including operand bytes), and a
 * description of the type of each operand. These operand types include signed
 * and unsigned integers of length one and four bytes. The unsigned integers
 * are used for indexes or for, e.g., the count of objects to push in a "push"

Changes to generic/tclDictObj.c.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    {"remove",	DictRemoveCmd, NULL, NULL, NULL, 0 },
    {"replace",	DictReplaceCmd, NULL, NULL, NULL, 0 },
    {"set",	DictSetCmd,	TclCompileDictSetCmd, NULL, NULL, 0 },
    {"size",	DictSizeCmd, NULL, NULL, NULL, 0 },
    {"unset",	DictUnsetCmd, NULL, NULL, NULL, 0 },
    {"update",	DictUpdateCmd,	TclCompileDictUpdateCmd, NULL, NULL, 0 },
    {"values",	DictValuesCmd, NULL, NULL, NULL, 0 },
    {"with",	DictWithCmd, NULL, NULL, NULL, 0 },
    {NULL, NULL, NULL, NULL, NULL, 0}
};

/*
 * Internal representation of the entries in the hash table that backs a
 * dictionary.
 */







|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    {"remove",	DictRemoveCmd, NULL, NULL, NULL, 0 },
    {"replace",	DictReplaceCmd, NULL, NULL, NULL, 0 },
    {"set",	DictSetCmd,	TclCompileDictSetCmd, NULL, NULL, 0 },
    {"size",	DictSizeCmd, NULL, NULL, NULL, 0 },
    {"unset",	DictUnsetCmd, NULL, NULL, NULL, 0 },
    {"update",	DictUpdateCmd,	TclCompileDictUpdateCmd, NULL, NULL, 0 },
    {"values",	DictValuesCmd, NULL, NULL, NULL, 0 },
    {"with",	DictWithCmd,	TclCompileDictWithCmd, NULL, NULL, 0 },
    {NULL, NULL, NULL, NULL, NULL, 0}
};

/*
 * Internal representation of the entries in the hash table that backs a
 * dictionary.
 */
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
DictWithCmd(
    ClientData dummy,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const *objv)
{
    Interp *iPtr = (Interp *) interp;
    Tcl_Obj *dictPtr, *keysPtr, *keyPtr = NULL, *valPtr = NULL, *pathPtr;
    Tcl_DictSearch s;
    int done;

    if (objc < 3) {
	Tcl_WrongNumArgs(interp, 1, objv, "dictVar ?key ...? script");
	return TCL_ERROR;
    }

    /*
     * Get the dictionary to open out.
     */

    dictPtr = Tcl_ObjGetVar2(interp, objv[1], NULL, TCL_LEAVE_ERR_MSG);
    if (dictPtr == NULL) {
	return TCL_ERROR;
    }
    if (objc > 3) {
	dictPtr = TclTraceDictPath(interp, dictPtr, objc-3, objv+2,
		DICT_PATH_READ);
	if (dictPtr == NULL) {
	    return TCL_ERROR;
	}
    }

    /*
     * Go over the list of keys and write each corresponding value to a
     * variable in the current context with the same name. Also keep a copy of
     * the keys so we can write back properly later on even if the dictionary
     * has been structurally modified.
     */

    if (Tcl_DictObjFirst(interp, dictPtr, &s, &keyPtr, &valPtr,
	    &done) != TCL_OK) {
	return TCL_ERROR;
    }

    TclNewObj(keysPtr);
    Tcl_IncrRefCount(keysPtr);

    for (; !done ; Tcl_DictObjNext(&s, &keyPtr, &valPtr, &done)) {
	Tcl_ListObjAppendElement(NULL, keysPtr, keyPtr);
	if (Tcl_ObjSetVar2(interp, keyPtr, NULL, valPtr,
		TCL_LEAVE_ERR_MSG) == NULL) {
	    TclDecrRefCount(keysPtr);
	    Tcl_DictObjDone(&s);
	    return TCL_ERROR;
	}
    }

    /*
     * Execute the body, while making the invoking context available to the
     * loop body (TIP#280) and postponing the cleanup until later (NRE).
     */

    pathPtr = NULL;







|
<
<














<
<
<
<
<
|
<
|
<
<
<
<
<
<
|
<
<


<
<

<
<
<
<
<
<
<
<
<
<







3106
3107
3108
3109
3110
3111
3112
3113


3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127





3128

3129






3130


3131
3132


3133










3134
3135
3136
3137
3138
3139
3140
DictWithCmd(
    ClientData dummy,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const *objv)
{
    Interp *iPtr = (Interp *) interp;
    Tcl_Obj *dictPtr, *keysPtr, *pathPtr;



    if (objc < 3) {
	Tcl_WrongNumArgs(interp, 1, objv, "dictVar ?key ...? script");
	return TCL_ERROR;
    }

    /*
     * Get the dictionary to open out.
     */

    dictPtr = Tcl_ObjGetVar2(interp, objv[1], NULL, TCL_LEAVE_ERR_MSG);
    if (dictPtr == NULL) {
	return TCL_ERROR;
    }







    keysPtr = TclDictWithInit(interp, dictPtr, objc-3, objv+2);






    if (keysPtr == NULL) {


	return TCL_ERROR;
    }


    Tcl_IncrRefCount(keysPtr);











    /*
     * Execute the body, while making the invoking context available to the
     * loop body (TIP#280) and postponing the cleanup until later (NRE).
     */

    pathPtr = NULL;
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191

3192
3193
3194
3195
3196




























































































































































3197
3198
3199
3200
3201

3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228


3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248

3249

3250


3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270

static int
FinalizeDictWith(
    ClientData data[],
    Tcl_Interp *interp,
    int result)
{
    Tcl_Obj **keyv, *leafPtr, *dictPtr, *valPtr;
    int keyc, i, allocdict = 0;
    Tcl_InterpState state;
    Tcl_Obj *varName = data[0];
    Tcl_Obj *keysPtr = data[1];
    Tcl_Obj *pathPtr = data[2];


    if (result == TCL_ERROR) {
	Tcl_AddErrorInfo(interp, "\n    (body of \"dict with\")");
    }





























































































































































    /*
     * If the dictionary variable doesn't exist, drop everything silently.
     */

    dictPtr = Tcl_ObjGetVar2(interp, varName, NULL, 0);

    if (dictPtr == NULL) {
	TclDecrRefCount(varName);
	TclDecrRefCount(keysPtr);
	if (pathPtr) {
	    TclDecrRefCount(pathPtr);
	}
	return result;
    }

    /*
     * Double-check that it is still a dictionary.
     */

    state = Tcl_SaveInterpState(interp, result);
    if (Tcl_DictObjSize(interp, dictPtr, &i) != TCL_OK) {
	TclDecrRefCount(varName);
	TclDecrRefCount(keysPtr);
	if (pathPtr) {
	    TclDecrRefCount(pathPtr);
	}
	Tcl_DiscardInterpState(state);
	return TCL_ERROR;
    }

    if (Tcl_IsShared(dictPtr)) {
	dictPtr = Tcl_DuplicateObj(dictPtr);
	allocdict = 1;


    }

    if (pathPtr != NULL) {
	Tcl_Obj **pathv;
	int pathc;

	/*
	 * Want to get to the dictionary which we will update; need to do
	 * prepare-for-update de-sharing along the path *but* avoid generating
	 * an error on a non-existant path (we'll treat that the same as a
	 * non-existant variable. Luckily, the de-sharing operation isn't
	 * deeply damaging if we don't go on to update; it's just less than
	 * perfectly efficient (but no memory should be leaked).
	 */

	Tcl_ListObjGetElements(NULL, pathPtr, &pathc, &pathv);
	leafPtr = TclTraceDictPath(interp, dictPtr, pathc, pathv,
		DICT_PATH_EXISTS | DICT_PATH_UPDATE);
	TclDecrRefCount(pathPtr);
	if (leafPtr == NULL) {

	    TclDecrRefCount(varName);

	    TclDecrRefCount(keysPtr);


	    if (allocdict) {
		TclDecrRefCount(dictPtr);
	    }
	    Tcl_DiscardInterpState(state);
	    return TCL_ERROR;
	}
	if (leafPtr == DICT_PATH_NON_EXISTENT) {
	    TclDecrRefCount(varName);
	    TclDecrRefCount(keysPtr);
	    if (allocdict) {
		TclDecrRefCount(dictPtr);
	    }
	    return Tcl_RestoreInterpState(interp, state);
	}
    } else {
	leafPtr = dictPtr;
    }

    /*
     * Now process our updates on the leaf dictionary.







|
|




>





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




|
>

<
<
<
<
<
|






<

<
<
<
<
<
<






>
>


|
<
<
<









<


<

>
|
>
|
>
>



<
|
<
<
<
<
<
<
<
<







3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332





3333
3334
3335
3336
3337
3338
3339

3340






3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351



3352
3353
3354
3355
3356
3357
3358
3359
3360

3361
3362

3363
3364
3365
3366
3367
3368
3369
3370
3371
3372

3373








3374
3375
3376
3377
3378
3379
3380

static int
FinalizeDictWith(
    ClientData data[],
    Tcl_Interp *interp,
    int result)
{
    Tcl_Obj **pathv;
    int pathc;
    Tcl_InterpState state;
    Tcl_Obj *varName = data[0];
    Tcl_Obj *keysPtr = data[1];
    Tcl_Obj *pathPtr = data[2];
    Var *varPtr, *arrayPtr;

    if (result == TCL_ERROR) {
	Tcl_AddErrorInfo(interp, "\n    (body of \"dict with\")");
    }

    /*
     * Save the result state; TDWF doesn't guarantee to not modify that on
     * TCL_OK result.
     */

    state = Tcl_SaveInterpState(interp, result);
    if (pathPtr != NULL) {
	Tcl_ListObjGetElements(NULL, pathPtr, &pathc, &pathv);
    } else {
	pathc = 0;
	pathv = NULL;
    }

    /*
     * Pack from local variables back into the dictionary.
     */

    varPtr = TclObjLookupVarEx(interp, varName, NULL, TCL_LEAVE_ERR_MSG, "set",
	    /*createPart1*/ 1, /*createPart2*/ 1, &arrayPtr);
    if (varPtr == NULL) {
	result = TCL_ERROR;
    } else {
	result = TclDictWithFinish(interp, varPtr, arrayPtr, varName, NULL, -1,
		pathc, pathv, keysPtr);
    }

    /*
     * Tidy up and return the real result (unless we had an error).
     */

    TclDecrRefCount(varName);
    TclDecrRefCount(keysPtr);
    if (pathPtr != NULL) {
	TclDecrRefCount(pathPtr);
    }
    if (result != TCL_OK) {
	Tcl_DiscardInterpState(state);
	return TCL_ERROR;
    }
    return Tcl_RestoreInterpState(interp, state);
}

/*
 *----------------------------------------------------------------------
 *
 * TclDictWithInit --
 *
 *	Part of the core of [dict with]. Pokes into a dictionary and converts
 *	the mappings there into assignments to (presumably) local variables.
 *	Returns a list of all the names that were mapped so that removal of
 *	either the variable or the dictionary entry won't surprise us when we
 *	come to stuffing everything back.
 *
 * Result:
 *	List of mapped names, or NULL if there was an error.
 *
 * Side effects:
 *	Assigns to variables, so potentially legion due to traces.
 *
 *----------------------------------------------------------------------
 */

Tcl_Obj *
TclDictWithInit(
    Tcl_Interp *interp,
    Tcl_Obj *dictPtr,
    int pathc,
    Tcl_Obj *const pathv[])
{
    Tcl_DictSearch s;
    Tcl_Obj *keyPtr, *valPtr, *keysPtr;
    int done;

    if (pathc > 0) {
	dictPtr = TclTraceDictPath(interp, dictPtr, pathc, pathv,
		DICT_PATH_READ);
	if (dictPtr == NULL) {
	    return NULL;
	}
    }

    /*
     * Go over the list of keys and write each corresponding value to a
     * variable in the current context with the same name. Also keep a copy of
     * the keys so we can write back properly later on even if the dictionary
     * has been structurally modified.
     */

    if (Tcl_DictObjFirst(interp, dictPtr, &s, &keyPtr, &valPtr,
	    &done) != TCL_OK) {
	return NULL;
    }

    TclNewObj(keysPtr);

    for (; !done ; Tcl_DictObjNext(&s, &keyPtr, &valPtr, &done)) {
	Tcl_ListObjAppendElement(NULL, keysPtr, keyPtr);
	if (Tcl_ObjSetVar2(interp, keyPtr, NULL, valPtr,
		TCL_LEAVE_ERR_MSG) == NULL) {
	    TclDecrRefCount(keysPtr);
	    Tcl_DictObjDone(&s);
	    return NULL;
	}
    }

    return keysPtr;
}

/*
 *----------------------------------------------------------------------
 *
 * TclDictWithFinish --
 *
 *	Part of the core of [dict with]. Reassembles the piece of the dict (in
 *	varName, location given by pathc/pathv) from the variables named in
 *	the keysPtr argument. NB, does not try to preserve errors or manage
 *	argument lifetimes.
 *
 * Result:
 *	TCL_OK if we succeeded, or TCL_ERROR if we failed.
 *
 * Side effects:
 *	Assigns to a variable, so potentially legion due to traces. Updates
 *	the dictionary in the named variable.
 *
 *----------------------------------------------------------------------
 */

int
TclDictWithFinish(
    Tcl_Interp *interp,		/* Command interpreter in which variable
				 * exists. Used for state management, traces
				 * and error reporting. */
    Var *varPtr,		/* Reference to the variable holding the
				 * dictionary. */
    Var *arrayPtr,		/* Reference to the array containing the
				 * variable, or NULL if the variable is a
				 * scalar. */
    Tcl_Obj *part1Ptr,		/* Name of an array (if part2 is non-NULL) or
				 * the name of a variable. NULL if the 'index'
				 * parameter is >= 0 */
    Tcl_Obj *part2Ptr,		/* If non-NULL, gives the name of an element
				 * in the array part1. */
    int index,			/* Index into the local variable table of the
				 * variable, or -1. Only used when part1Ptr is
				 * NULL. */
    int pathc,			/* The number of elements in the path into the
				 * dictionary. */
    Tcl_Obj *const pathv[],	/* The elements of the path to the subdict. */
    Tcl_Obj *keysPtr)		/* List of keys to be synchronized. This is
				 * the result value from TclDictWithInit. */
{
    Tcl_Obj *dictPtr, *leafPtr, *valPtr;
    int i, allocdict, keyc;
    Tcl_Obj **keyv;

    /*
     * If the dictionary variable doesn't exist, drop everything silently.
     */

    dictPtr = TclPtrGetVar(interp, varPtr, arrayPtr, part1Ptr, part2Ptr,
	    TCL_LEAVE_ERR_MSG, index);
    if (dictPtr == NULL) {





	return TCL_OK;
    }

    /*
     * Double-check that it is still a dictionary.
     */


    if (Tcl_DictObjSize(interp, dictPtr, &i) != TCL_OK) {






	return TCL_ERROR;
    }

    if (Tcl_IsShared(dictPtr)) {
	dictPtr = Tcl_DuplicateObj(dictPtr);
	allocdict = 1;
    } else {
	allocdict = 0;
    }

    if (pathc > 0) {



	/*
	 * Want to get to the dictionary which we will update; need to do
	 * prepare-for-update de-sharing along the path *but* avoid generating
	 * an error on a non-existant path (we'll treat that the same as a
	 * non-existant variable. Luckily, the de-sharing operation isn't
	 * deeply damaging if we don't go on to update; it's just less than
	 * perfectly efficient (but no memory should be leaked).
	 */


	leafPtr = TclTraceDictPath(interp, dictPtr, pathc, pathv,
		DICT_PATH_EXISTS | DICT_PATH_UPDATE);

	if (leafPtr == NULL) {
	    if (allocdict) {
		TclDecrRefCount(dictPtr);
	    }
	    return TCL_ERROR;
	}
	if (leafPtr == DICT_PATH_NON_EXISTENT) {
	    if (allocdict) {
		TclDecrRefCount(dictPtr);
	    }

	    return TCL_OK;








	}
    } else {
	leafPtr = dictPtr;
    }

    /*
     * Now process our updates on the leaf dictionary.
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305

3306

3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
	     */

	    Tcl_DictObjPut(NULL, leafPtr, keyv[i], Tcl_DuplicateObj(valPtr));
	} else {
	    Tcl_DictObjPut(NULL, leafPtr, keyv[i], valPtr);
	}
    }
    TclDecrRefCount(keysPtr);

    /*
     * Ensure that none of the dictionaries in the chain still have a string
     * rep.
     */

    if (pathPtr != NULL) {
	InvalidateDictChain(leafPtr);
    }

    /*
     * Write back the outermost dictionary to the variable.
     */

    if (Tcl_ObjSetVar2(interp, varName, NULL, dictPtr,
	    TCL_LEAVE_ERR_MSG) == NULL) {

	Tcl_DiscardInterpState(state);

	return TCL_ERROR;
    }
    TclDecrRefCount(varName);
    return Tcl_RestoreInterpState(interp, state);
}

/*
 *----------------------------------------------------------------------
 *
 * TclInitDictCmd --
 *







<






|







|
|
>
|
>


<
|







3392
3393
3394
3395
3396
3397
3398

3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419

3420
3421
3422
3423
3424
3425
3426
3427
	     */

	    Tcl_DictObjPut(NULL, leafPtr, keyv[i], Tcl_DuplicateObj(valPtr));
	} else {
	    Tcl_DictObjPut(NULL, leafPtr, keyv[i], valPtr);
	}
    }


    /*
     * Ensure that none of the dictionaries in the chain still have a string
     * rep.
     */

    if (pathc > 0) {
	InvalidateDictChain(leafPtr);
    }

    /*
     * Write back the outermost dictionary to the variable.
     */

    if (TclPtrSetVar(interp, varPtr, arrayPtr, part1Ptr, part2Ptr, dictPtr,
	    TCL_LEAVE_ERR_MSG, index) == NULL) {
	if (allocdict) {
	    TclDecrRefCount(dictPtr);
	}
	return TCL_ERROR;
    }

    return TCL_OK;
}

/*
 *----------------------------------------------------------------------
 *
 * TclInitDictCmd --
 *

Changes to generic/tclExecute.c.

1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
    iPtr->stats.numExecutions++;
#endif

    /*
     * Push the callback for bytecode execution
     */
    
    TclNRAddCallback(interp, TEBCresume, TD,
	    /*resume*/ INT2PTR(0), NULL, NULL);
    
    return TCL_OK;
}

static int
TEBCresume(
    ClientData data[],
    Tcl_Interp *interp,







|
|
<







1988
1989
1990
1991
1992
1993
1994
1995
1996

1997
1998
1999
2000
2001
2002
2003
    iPtr->stats.numExecutions++;
#endif

    /*
     * Push the callback for bytecode execution
     */
    
    TclNRAddCallback(interp, TEBCresume, TD, /*resume*/ INT2PTR(0),
	    NULL, NULL);

    return TCL_OK;
}

static int
TEBCresume(
    ClientData data[],
    Tcl_Interp *interp,
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
    /*
     * -----------------------------------------------------------------
     *	   Start of dictionary-related instructions.
     */

    {
	int opnd2, allocateDict, done, i, allocdict;
	Tcl_Obj *dictPtr, *statePtr, *keyPtr;
	Tcl_Obj *emptyPtr, **keyPtrPtr;
	Tcl_DictSearch *searchPtr;
	DictUpdateInfo *duiPtr;

    case INST_DICT_GET:
	opnd = TclGetUInt4AtPtr(pc+1);
	TRACE(("%u => ", opnd));







|







5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
    /*
     * -----------------------------------------------------------------
     *	   Start of dictionary-related instructions.
     */

    {
	int opnd2, allocateDict, done, i, allocdict;
	Tcl_Obj *dictPtr, *statePtr, *keyPtr, *listPtr, *varNamePtr, *keysPtr;
	Tcl_Obj *emptyPtr, **keyPtrPtr;
	Tcl_DictSearch *searchPtr;
	DictUpdateInfo *duiPtr;

    case INST_DICT_GET:
	opnd = TclGetUInt4AtPtr(pc+1);
	TRACE(("%u => ", opnd));
6101
6102
6103
6104
6105
6106
6107








































































6108
6109
6110
6111
6112
6113
6114
		if (allocdict) {
		    TclDecrRefCount(dictPtr);
		}
		goto gotError;
	    }
	}
	NEXT_INST_F(9, 1, 0);








































































    }

    /*
     *	   End of dictionary-related instructions.
     * -----------------------------------------------------------------
     */








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
		if (allocdict) {
		    TclDecrRefCount(dictPtr);
		}
		goto gotError;
	    }
	}
	NEXT_INST_F(9, 1, 0);

    case INST_DICT_EXPAND:
	dictPtr = OBJ_UNDER_TOS;
	listPtr = OBJ_AT_TOS;
	if (TclListObjGetElements(interp, listPtr, &objc, &objv) != TCL_OK) {
	    TRACE_WITH_OBJ(("%.30s %.30s => ERROR: ",
		    O2S(dictPtr), O2S(listPtr)), Tcl_GetObjResult(interp));
	    goto gotError;
	}
	objResultPtr = TclDictWithInit(interp, dictPtr, objc, objv);
	if (objResultPtr == NULL) {
	    TRACE_WITH_OBJ(("%.30s %.30s => ERROR: ",
		    O2S(dictPtr), O2S(listPtr)), Tcl_GetObjResult(interp));
	    goto gotError;
	}
	TRACE_APPEND(("%.30s\n", O2S(objResultPtr)));
	NEXT_INST_F(1, 2, 1);

    case INST_DICT_RECOMBINE_STK:
	keysPtr = POP_OBJECT();
	varNamePtr = OBJ_UNDER_TOS;
	listPtr = OBJ_AT_TOS;
	TRACE(("\"%.30s\" \"%.30s\" \"%.30s\" => ",
		O2S(varNamePtr), O2S(valuePtr), O2S(keysPtr)));
	if (TclListObjGetElements(interp, listPtr, &objc, &objv) != TCL_OK) {
	    TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp))));
	    TclDecrRefCount(keysPtr);
	    goto gotError;
	}
	varPtr = TclObjLookupVarEx(interp, varNamePtr, NULL,
		TCL_LEAVE_ERR_MSG, "set", 1, 1, &arrayPtr);
	if (varPtr == NULL) {
	    TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp))));
	    TclDecrRefCount(keysPtr);
	    goto gotError;
	}
	DECACHE_STACK_INFO();
	result = TclDictWithFinish(interp, varPtr,arrayPtr,varNamePtr,NULL,-1,
		objc, objv, keysPtr);
	CACHE_STACK_INFO();
	TclDecrRefCount(keysPtr);
	if (result != TCL_OK) {
	    TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp))));
	    goto gotError;
	}
	TRACE_APPEND(("OK\n"));
	NEXT_INST_F(1, 2, 0);

    case INST_DICT_RECOMBINE_IMM:
	opnd = TclGetUInt4AtPtr(pc+1);
	listPtr = OBJ_UNDER_TOS;
	keysPtr = OBJ_AT_TOS;
	varPtr = LOCAL(opnd);
	TRACE(("%u <- \"%.30s\" \"%.30s\" => ", opnd, O2S(valuePtr),
		O2S(keysPtr)));
	if (TclListObjGetElements(interp, listPtr, &objc, &objv) != TCL_OK) {
	    TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp))));
	    goto gotError;
	}
	while (TclIsVarLink(varPtr)) {
	    varPtr = varPtr->value.linkPtr;
	}
	DECACHE_STACK_INFO();
	result = TclDictWithFinish(interp, varPtr, NULL, NULL, NULL, opnd,
		objc, objv, keysPtr);
	CACHE_STACK_INFO();
	if (result != TCL_OK) {
	    TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp))));
	    goto gotError;
	}
	TRACE_APPEND(("OK\n"));
	NEXT_INST_F(5, 2, 0);
    }

    /*
     *	   End of dictionary-related instructions.
     * -----------------------------------------------------------------
     */

Changes to generic/tclIORTrans.c.

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
static int
ReflectClose(
    ClientData clientData,
    Tcl_Interp *interp)
{
    ReflectedTransform *rtPtr = clientData;
    int errorCode, errorCodeSet = 0;
    int result;			/* Result code for 'close' */
    Tcl_Obj *resObj;		/* Result data for 'close' */
    ReflectedTransformMap *rtmPtr;
				/* Map of reflected transforms with handlers
				 * in this interp. */
    Tcl_HashEntry *hPtr;	/* Entry in the above map */

    if (TclInThreadExit()) {







|







881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
static int
ReflectClose(
    ClientData clientData,
    Tcl_Interp *interp)
{
    ReflectedTransform *rtPtr = clientData;
    int errorCode, errorCodeSet = 0;
    int result = TCL_OK;	/* Result code for 'close' */
    Tcl_Obj *resObj;		/* Result data for 'close' */
    ReflectedTransformMap *rtmPtr;
				/* Map of reflected transforms with handlers
				 * in this interp. */
    Tcl_HashEntry *hPtr;	/* Entry in the above map */

    if (TclInThreadExit()) {

Changes to generic/tclInt.h.

3227
3228
3229
3230
3231
3232
3233






3234
3235
3236
3237
3238
3239
3240
MODULE_SCOPE Tcl_TimerToken TclCreateAbsoluteTimerHandler(
			    Tcl_Time *timePtr, Tcl_TimerProc *proc,
			    ClientData clientData);
MODULE_SCOPE int	TclDefaultBgErrorHandlerObjCmd(
			    ClientData clientData, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitDictCmd(Tcl_Interp *interp);






MODULE_SCOPE int	Tcl_DisassembleObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
			    
/* Assemble command function */			    
MODULE_SCOPE int	Tcl_AssembleObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,







>
>
>
>
>
>







3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
MODULE_SCOPE Tcl_TimerToken TclCreateAbsoluteTimerHandler(
			    Tcl_Time *timePtr, Tcl_TimerProc *proc,
			    ClientData clientData);
MODULE_SCOPE int	TclDefaultBgErrorHandlerObjCmd(
			    ClientData clientData, Tcl_Interp *interp,
			    int objc, Tcl_Obj *const objv[]);
MODULE_SCOPE Tcl_Command TclInitDictCmd(Tcl_Interp *interp);
MODULE_SCOPE int	TclDictWithFinish(Tcl_Interp *interp, Var *varPtr,
			    Var *arrayPtr, Tcl_Obj *part1Ptr,
			    Tcl_Obj *part2Ptr, int index, int pathc,
			    Tcl_Obj *const pathv[], Tcl_Obj *keysPtr);
MODULE_SCOPE Tcl_Obj *	TclDictWithInit(Tcl_Interp *interp, Tcl_Obj *dictPtr,
			    int pathc, Tcl_Obj *const pathv[]);
MODULE_SCOPE int	Tcl_DisassembleObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
			    Tcl_Obj *const objv[]);
			    
/* Assemble command function */			    
MODULE_SCOPE int	Tcl_AssembleObjCmd(ClientData clientData,
			    Tcl_Interp *interp, int objc,
3490
3491
3492
3493
3494
3495
3496



3497
3498
3499
3500
3501
3502
3503
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileDictSetCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileDictUpdateCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,



			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileEnsemble(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileErrorCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);







>
>
>







3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileDictSetCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileDictUpdateCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileDictWithCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileEnsemble(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);
MODULE_SCOPE int	TclCompileErrorCmd(Tcl_Interp *interp,
			    Tcl_Parse *parsePtr, Command *cmdPtr,
			    struct CompileEnv *envPtr);

Changes to generic/tclNamesp.c.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    {"delete",          NamespaceDeleteCmd, NULL, NULL, NULL, 0},
    {"ensemble",        TclNamespaceEnsembleCmd, NULL, NULL, NULL, 0},
    {"eval",            NamespaceEvalCmd,       NULL, NRNamespaceEvalCmd, NULL, 0},
    {"exists",          NamespaceExistsCmd, NULL, NULL, NULL, 0},
    {"export",          NamespaceExportCmd, NULL, NULL, NULL, 0},
    {"forget",          NamespaceForgetCmd, NULL, NULL, NULL, 0},
    {"import",          NamespaceImportCmd, NULL, NULL, NULL, 0},
    {"inscope",         NamespaceInscopeCmd,    NULL, NULL, NRNamespaceInscopeCmd, 0},
    {"origin",          NamespaceOriginCmd, NULL, NULL, NULL, 0},
    {"parent",          NamespaceParentCmd, NULL, NULL, NULL, 0},
    {"path",            NamespacePathCmd, NULL, NULL, NULL, 0},
    {"qualifiers",      NamespaceQualifiersCmd, NULL, NULL, NULL, 0},
    {"tail",            NamespaceTailCmd, NULL, NULL, NULL, 0},
    {"unknown",         NamespaceUnknownCmd, NULL, NULL, NULL, 0},
    {"upvar",           NamespaceUpvarCmd,      TclCompileNamespaceUpvarCmd, NULL, NULL, 0},







|







166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    {"delete",          NamespaceDeleteCmd, NULL, NULL, NULL, 0},
    {"ensemble",        TclNamespaceEnsembleCmd, NULL, NULL, NULL, 0},
    {"eval",            NamespaceEvalCmd,       NULL, NRNamespaceEvalCmd, NULL, 0},
    {"exists",          NamespaceExistsCmd, NULL, NULL, NULL, 0},
    {"export",          NamespaceExportCmd, NULL, NULL, NULL, 0},
    {"forget",          NamespaceForgetCmd, NULL, NULL, NULL, 0},
    {"import",          NamespaceImportCmd, NULL, NULL, NULL, 0},
    {"inscope",         NamespaceInscopeCmd,    NULL, NRNamespaceInscopeCmd, NULL, 0},
    {"origin",          NamespaceOriginCmd, NULL, NULL, NULL, 0},
    {"parent",          NamespaceParentCmd, NULL, NULL, NULL, 0},
    {"path",            NamespacePathCmd, NULL, NULL, NULL, 0},
    {"qualifiers",      NamespaceQualifiersCmd, NULL, NULL, NULL, 0},
    {"tail",            NamespaceTailCmd, NULL, NULL, NULL, 0},
    {"unknown",         NamespaceUnknownCmd, NULL, NULL, NULL, 0},
    {"upvar",           NamespaceUpvarCmd,      TclCompileNamespaceUpvarCmd, NULL, NULL, 0},

Changes to generic/tclTest.c.

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    Tcl_AsyncHandler handler;	/* Tcl's token for the handler. */
    char *command;		/* Command to invoke when the handler is
				 * invoked. */
    struct TestAsyncHandler *nextPtr;
				/* Next is list of handlers. */
} TestAsyncHandler;

TCL_DECLARE_MUTEX(asyncTestMutex);

static TestAsyncHandler *firstHandler = NULL;

/*
 * The dynamic string below is used by the "testdstring" command to test the
 * dynamic string facilities.
 */







|







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    Tcl_AsyncHandler handler;	/* Tcl's token for the handler. */
    char *command;		/* Command to invoke when the handler is
				 * invoked. */
    struct TestAsyncHandler *nextPtr;
				/* Next is list of handlers. */
} TestAsyncHandler;

TCL_DECLARE_MUTEX(asyncTestMutex)

static TestAsyncHandler *firstHandler = NULL;

/*
 * The dynamic string below is used by the "testdstring" command to test the
 * dynamic string facilities.
 */
7105
7106
7107
7108
7109
7110
7111

7112
7113
7114
7115
7116
7117
7118

7119
7120
7121
7122
7123
7124
7125
static int
TestparseargsCmd(
    ClientData dummy,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* Arguments. */
{

    int count = objc, foo = 0;
    Tcl_Obj **remObjv, *result[3];
    Tcl_ArgvInfo argTable[] = {
        {TCL_ARGV_CONSTANT, "-bool", INT2PTR(1), &foo, "booltest", NULL},
        TCL_ARGV_AUTO_REST, TCL_ARGV_AUTO_HELP, TCL_ARGV_TABLE_END
    };


    if (Tcl_ParseArgsObjv(interp, argTable, &count, objv, &remObjv)!=TCL_OK) {
        return TCL_ERROR;
    }
    result[0] = Tcl_NewIntObj(foo);
    result[1] = Tcl_NewIntObj(count);
    result[2] = Tcl_NewListObj(count, remObjv);
    Tcl_SetObjResult(interp, Tcl_NewListObj(3, result));







>
|






>







7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
static int
TestparseargsCmd(
    ClientData dummy,		/* Not used. */
    Tcl_Interp *interp,		/* Current interpreter. */
    int objc,			/* Number of arguments. */
    Tcl_Obj *const objv[])	/* Arguments. */
{
    static int foo = 0;
    int count = objc;
    Tcl_Obj **remObjv, *result[3];
    Tcl_ArgvInfo argTable[] = {
        {TCL_ARGV_CONSTANT, "-bool", INT2PTR(1), &foo, "booltest", NULL},
        TCL_ARGV_AUTO_REST, TCL_ARGV_AUTO_HELP, TCL_ARGV_TABLE_END
    };

    foo = 0;
    if (Tcl_ParseArgsObjv(interp, argTable, &count, objv, &remObjv)!=TCL_OK) {
        return TCL_ERROR;
    }
    result[0] = Tcl_NewIntObj(foo);
    result[1] = Tcl_NewIntObj(count);
    result[2] = Tcl_NewListObj(count, remObjv);
    Tcl_SetObjResult(interp, Tcl_NewListObj(3, result));

Changes to tests/dict.test.

1354
1355
1356
1357
1358
1359
1360


















































































































1361
1362
1363
1364
1365
1366
1367
	    }
	}
    }
    string range [append foo OK] end-1 end
} -cleanup {
    unset foo t inner
} -result OK



















































































































# cleanup
::tcltest::cleanupTests
return

# Local Variables:
# mode: tcl







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
	    }
	}
    }
    string range [append foo OK] end-1 end
} -cleanup {
    unset foo t inner
} -result OK
test dict-22.12 {dict with: compiled} {
    apply {{} {
	set d {a 1 b 2}
	list [dict with d {
	    set a $b
	    unset b
	    dict set d c 3
	    list ok
	}] $d
    }}
} {ok {a 2 c 3}}
test dict-22.13 {dict with: compiled} {
    apply {i {
	set d($i) {a 1 b 2}
	list [dict with d($i) {
	    set a $b
	    unset b
	    dict set d($i) c 3
	    list ok
	}] [array get d]
    }} e
} {ok {e {a 2 c 3}}}
test dict-22.14 {dict with: compiled} {
    apply {{} {
	set d {a 1 b 2}
	foreach x {1 2 3} {
	    dict with d {
		incr a $b
		if {$x == 2} break
	    }
	    unset a b
	}
	list $a $b $x $d
    }}
} {5 2 2 {a 5 b 2}}
test dict-22.15 {dict with: compiled} {
    apply {i {
	set d($i) {a 1 b 2}
	foreach x {1 2 3} {
	    dict with d($i) {
		incr a $b
		if {$x == 2} break
	    }
	    unset a b
	}
	list $a $b $x [array get d]
    }} e
} {5 2 2 {e {a 5 b 2}}}
test dict-22.16 {dict with: compiled} {
    apply {{} {
	set d {p {q {a 1 b 2}}}
	dict with d p q {
	    set a $b.$a
	}
	return $d
    }}
} {p {q {a 2.1 b 2}}}
test dict-22.17 {dict with: compiled} {
    apply {i {
	set d($i) {p {q {a 1 b 2}}}
	dict with d($i) p q {
	    set a $b.$a
	}
	array get d
    }} e
} {e {p {q {a 2.1 b 2}}}}
test dict-22.18 {dict with: compiled} {
    set ::d {a 1 b 2}
    apply {{} {
	dict with ::d {
	    set a $b.$a
	}
	return $::d
    }}
} {a 2.1 b 2}
test dict-22.19 {dict with: compiled} {
    set ::d {p {q {r {a 1 b 2}}}}
    apply {{} {
	dict with ::d p q r {
	    set a $b.$a
	}
	return $::d
    }}
} {p {q {r {a 2.1 b 2}}}}
test dict-22.20 {dict with: compiled} {
    apply {d {
	dict with d {
	}
	return $a,$b
    }} {a 1 b 2}
} 1,2
test dict-22.21 {dict with: compiled} {
    apply {d {
	dict with d p q {
	}
	return $a,$b
    }} {p {q {a 1 b 2}}}
} 1,2
test dict-22.22 {dict with: compiled} {
    set ::d {a 1 b 2}
    apply {{} {
	dict with ::d {
	}
	return $a,$b
    }}
} 1,2
test dict-22.23 {dict with: compiled} {
    set ::d {p {q {a 1 b 2}}}
    apply {{} {
	dict with ::d p q {
	}
	return $a,$b
    }}
} 1,2

# cleanup
::tcltest::cleanupTests
return

# Local Variables:
# mode: tcl

Changes to tests/env.test.

85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
	lrem names ""
    }
    foreach name {
	TCL_LIBRARY PATH LD_LIBRARY_PATH LIBPATH PURE_PROG_NAME DISPLAY
	SHLIB_PATH SYSTEMDRIVE SYSTEMROOT DYLD_LIBRARY_PATH DYLD_FRAMEWORK_PATH
	DYLD_NEW_LOCAL_SHARED_REGIONS DYLD_NO_FIX_PREBINDING
	__CF_USER_TEXT_ENCODING SECURITYSESSIONID LANG WINDIR TERM

    } {
	lrem names $name
    }
    foreach p $names {
	puts "[mangle $p]=[mangle $env($p)]"
    }
    exit
} printenv]

# [exec] is required here to see the actual environment received by child
# processes.
proc getenv {} {
    global printenvScript tcltest
    catch {exec [interpreter] $printenvScript} out
    if {$out eq "child process exited abnormally"} {
	set out {}







>








>







85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
	lrem names ""
    }
    foreach name {
	TCL_LIBRARY PATH LD_LIBRARY_PATH LIBPATH PURE_PROG_NAME DISPLAY
	SHLIB_PATH SYSTEMDRIVE SYSTEMROOT DYLD_LIBRARY_PATH DYLD_FRAMEWORK_PATH
	DYLD_NEW_LOCAL_SHARED_REGIONS DYLD_NO_FIX_PREBINDING
	__CF_USER_TEXT_ENCODING SECURITYSESSIONID LANG WINDIR TERM
	CommonProgramFiles ProgramFiles
    } {
	lrem names $name
    }
    foreach p $names {
	puts "[mangle $p]=[mangle $env($p)]"
    }
    exit
} printenv]

# [exec] is required here to see the actual environment received by child
# processes.
proc getenv {} {
    global printenvScript tcltest
    catch {exec [interpreter] $printenvScript} out
    if {$out eq "child process exited abnormally"} {
	set out {}
115
116
117
118
119
120
121

122
123
124
125
126
127
128
    # Keep some environment variables that support operation of the tcltest
    # package.
    if {[string toupper $name] ni {
	TCL_LIBRARY PATH LD_LIBRARY_PATH LIBPATH DISPLAY SHLIB_PATH
	SYSTEMDRIVE SYSTEMROOT DYLD_LIBRARY_PATH DYLD_FRAMEWORK_PATH
	DYLD_NEW_LOCAL_SHARED_REGIONS DYLD_NO_FIX_PREBINDING
	SECURITYSESSIONID LANG WINDIR TERM

    }} {
	unset env($name)
    }
}

# Need to run 'getenv' in known encoding, so save the current one here...
set sysenc [encoding system]







>







117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    # Keep some environment variables that support operation of the tcltest
    # package.
    if {[string toupper $name] ni {
	TCL_LIBRARY PATH LD_LIBRARY_PATH LIBPATH DISPLAY SHLIB_PATH
	SYSTEMDRIVE SYSTEMROOT DYLD_LIBRARY_PATH DYLD_FRAMEWORK_PATH
	DYLD_NEW_LOCAL_SHARED_REGIONS DYLD_NO_FIX_PREBINDING
	SECURITYSESSIONID LANG WINDIR TERM
	CommonProgramFiles ProgramFiles
    }} {
	unset env($name)
    }
}

# Need to run 'getenv' in known encoding, so save the current one here...
set sysenc [encoding system]

Changes to tests/io.test.

5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
    set f [open $path(test3) r]
    lappend x [gets $f]
    close $f
    set x
} {zzy abzzy}
test io-40.2 {POSIX open access modes: CREAT} {unix} {
    file delete $path(test3)
    set f [open $path(test3) {WRONLY CREAT} 0600]
    file stat $path(test3) stats
    set x [format "0%o" [expr $stats(mode)&0o777]]
    puts $f "line 1"
    close $f
    set f [open $path(test3) r]
    lappend x [gets $f]
    close $f
    set x
} {0600 {line 1}}
test io-40.3 {POSIX open access modes: CREAT} {unix umask} {
    # This test only works if your umask is 2, like ouster's.
    file delete $path(test3)
    set f [open $path(test3) {WRONLY CREAT}]
    close $f
    file stat $path(test3) stats
    format "0%o" [expr $stats(mode)&0o777]







|

|






|







5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
    set f [open $path(test3) r]
    lappend x [gets $f]
    close $f
    set x
} {zzy abzzy}
test io-40.2 {POSIX open access modes: CREAT} {unix} {
    file delete $path(test3)
    set f [open $path(test3) {WRONLY CREAT} 0o600]
    file stat $path(test3) stats
    set x [format "0o%o" [expr $stats(mode)&0o777]]
    puts $f "line 1"
    close $f
    set f [open $path(test3) r]
    lappend x [gets $f]
    close $f
    set x
} {0o600 {line 1}}
test io-40.3 {POSIX open access modes: CREAT} {unix umask} {
    # This test only works if your umask is 2, like ouster's.
    file delete $path(test3)
    set f [open $path(test3) {WRONLY CREAT}]
    close $f
    file stat $path(test3) stats
    format "0%o" [expr $stats(mode)&0o777]

Changes to win/tclWinFile.c.

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
 *
 * NativeMatchType --
 *
 *	This function needs a special case for a path which is a root volume,
 *	because for NTFS root volumes, the getFileAttributesProc returns a
 *	'hidden' attribute when it should not.
 *
 *	We never make any calss to a 'get attributes' routine here, since we
 *	have arranged things so that our caller already knows such
 *	information.
 *
 * Results:
 *	0 = file doesn't match
 *	1 = file matches
 *







|







1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
 *
 * NativeMatchType --
 *
 *	This function needs a special case for a path which is a root volume,
 *	because for NTFS root volumes, the getFileAttributesProc returns a
 *	'hidden' attribute when it should not.
 *
 *	We never make any calls to a 'get attributes' routine here, since we
 *	have arranged things so that our caller already knows such
 *	information.
 *
 * Results:
 *	0 = file doesn't match
 *	1 = file matches
 *
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    }

    /*
     * Propagate the S_IREAD, S_IWRITE, S_IEXEC bits to the group and other
     * positions.
     */

    mode |= (mode & 0x0700) >> 3;
    mode |= (mode & 0x0700) >> 6;
    return (unsigned short) mode;
}

/*
 *------------------------------------------------------------------------
 *
 * ToCTime --







|
|







2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
    }

    /*
     * Propagate the S_IREAD, S_IWRITE, S_IEXEC bits to the group and other
     * positions.
     */

    mode |= (mode & (S_IREAD|S_IWRITE|S_IEXEC)) >> 3;
    mode |= (mode & (S_IREAD|S_IWRITE|S_IEXEC)) >> 6;
    return (unsigned short) mode;
}

/*
 *------------------------------------------------------------------------
 *
 * ToCTime --