Tcl Source Code

Artifact [f3e037533b]
Login

Artifact f3e037533b4bd3e07c9b1a0b32e1a6326dda97f4:


     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
'\"
'\" Copyright (c) 1993 The Regents of the University of California.
'\" Copyright (c) 1994-1996 Sun Microsystems, Inc.
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
.TH format n 8.1 Tcl "Tcl Built-In Commands"
.so man.macros
.BS
'\" Note:  do not modify the .SH NAME line immediately below!
.SH NAME
format \- Format a string in the style of sprintf
.SH SYNOPSIS
\fBformat \fIformatString \fR?\fIarg arg ...\fR?
.BE

.SH INTRODUCTION
.PP
This command generates a formatted string in a fashion similar to the
ANSI C \fBsprintf\fR procedure.
\fIFormatString\fR indicates how to format the result, using
\fB%\fR conversion specifiers as in \fBsprintf\fR, and the additional
arguments, if any, provide values to be substituted into the result.
The return value from \fBformat\fR is the formatted string.
.SH "DETAILS ON FORMATTING"
.PP
The command operates by scanning \fIformatString\fR from left to right.
Each character from the format string is appended to the result
string unless it is a percent sign.
If the character is a \fB%\fR then it is not copied to the result string.
Instead, the characters following the \fB%\fR character are treated as
a conversion specifier.
The conversion specifier controls the conversion of the next successive
\fIarg\fR to a particular format and the result is appended to
the result string in place of the conversion specifier.
If there are multiple conversion specifiers in the format string,
then each one controls the conversion of one additional \fIarg\fR.
The \fBformat\fR command must be given enough \fIarg\fRs to meet the needs
of all of the conversion specifiers in \fIformatString\fR.
.PP
Each conversion specifier may contain up to six different parts:
an XPG3 position specifier,
a set of flags, a minimum field width, a precision, a size modifier,
and a conversion character.
Any of these fields may be omitted except for the conversion character.
The fields that are present must appear in the order given above.
The paragraphs below discuss each of these fields in turn.
.SS "OPTIONAL POSITIONAL SPECIFIER"
.PP
If the \fB%\fR is followed by a decimal number and a \fB$\fR, as in
.QW \fB%2$d\fR ,
then the value to convert is not taken from the next sequential argument.
Instead, it is taken from the argument indicated by the number,
where 1 corresponds to the first \fIarg\fR.
If the conversion specifier requires multiple arguments because
of \fB*\fR characters in the specifier then
successive arguments are used, starting with the argument
given by the number.
This follows the XPG3 conventions for positional specifiers.
If there are any positional specifiers in \fIformatString\fR
then all of the specifiers must be positional.
.SS "OPTIONAL FLAGS"
.PP
The second portion of a conversion specifier may contain any of the
following flag characters, in any order:
.TP 10
\fB\-\fR
Specifies that the converted argument should be left-justified
in its field (numbers are normally right-justified with leading
spaces if needed).
.TP 10
\fB+\fR
Specifies that a number should always be printed with a sign,
even if positive.
.TP 10
\fIspace\fR
Specifies that a space should be added to the beginning of the
number if the first character is not a sign.
.TP 10
\fB0\fR
Specifies that the number should be padded on the left with
zeroes instead of spaces.
.TP 10
\fB#\fR
Requests an alternate output form. For \fBo\fR and \fBO\fR
conversions it guarantees that the first digit is always \fB0\fR.
For \fBx\fR or \fBX\fR conversions, \fB0x\fR or \fB0X\fR (respectively)
will be added to the beginning of the result unless it is zero.
For \fBb\fR conversions, \fB0b\fR
will be added to the beginning of the result unless it is zero.
For all floating-point conversions (\fBe\fR, \fBE\fR, \fBf\fR,
\fBg\fR, and \fBG\fR) it guarantees that the result always
has a decimal point.
For \fBg\fR and \fBG\fR conversions it specifies that
trailing zeroes should not be removed.
.SS "OPTIONAL FIELD WIDTH"
.PP
The third portion of a conversion specifier is a decimal number giving a
minimum field width for this conversion.
It is typically used to make columns line up in tabular printouts.
If the converted argument contains fewer characters than the
minimum field width then it will be padded so that it is as wide
as the minimum field width.
Padding normally occurs by adding extra spaces on the left of the
converted argument, but the \fB0\fR and \fB\-\fR flags
may be used to specify padding with zeroes on the left or with
spaces on the right, respectively.
If the minimum field width is specified as \fB*\fR rather than
a number, then the next argument to the \fBformat\fR command
determines the minimum field width; it must be an integer value.
.SS "OPTIONAL PRECISION/BOUND"
.PP
The fourth portion of a conversion specifier is a precision,
which consists of a period followed by a number.
The number is used in different ways for different conversions.
For \fBe\fR, \fBE\fR, and \fBf\fR conversions it specifies the number
of digits to appear to the right of the decimal point.
For \fBg\fR and \fBG\fR conversions it specifies the total number
of digits to appear, including those on both sides of the decimal
point (however, trailing zeroes after the decimal point will still
be omitted unless the \fB#\fR flag has been specified).
For integer conversions, it specifies a minimum number of digits
to print (leading zeroes will be added if necessary).
For \fBs\fR conversions it specifies the maximum number of characters to be
printed; if the string is longer than this then the trailing characters will be dropped.
If the precision is specified with \fB*\fR rather than a number
then the next argument to the \fBformat\fR command determines the precision;
it must be a numeric string.
.SS "OPTIONAL SIZE MODIFIER"
.PP
The fifth part of a conversion specifier is a size modifier,
which must be \fBll\fR, \fBh\fR, or \fBl\fR.
If it is \fBll\fR it specifies that an integer value is taken
without truncation for conversion to a formatted substring.
If it is \fBh\fR it specifies that an integer value is
truncated to a 16-bit range before converting.  This option is rarely useful.
If it is \fBl\fR it specifies that the integer value is
truncated to the same range as that produced by the \fBwide()\fR
function of the \fBexpr\fR command (at least a 64-bit range).
If neither \fBh\fR nor \fBl\fR are present, the integer value is
truncated to the same range as that produced by the \fBint()\fR
function of the \fBexpr\fR command (at least a 32-bit range, but
determined by the value of the \fBwordSize\fR element of the
\fBtcl_platform\fR array).
.SS "MANDATORY CONVERSION TYPE"
.PP
The last thing in a conversion specifier is an alphabetic character
that determines what kind of conversion to perform.
The following conversion characters are currently supported:
.TP 10
\fBd\fR
Convert integer to signed decimal string.
.TP 10
\fBu\fR
Convert integer to unsigned decimal string.
.TP 10
\fBi\fR
Convert integer to signed decimal string (equivalent to \fBd\fR).
.TP 10
\fBo\fR
Convert integer to unsigned octal string.
.TP 10
\fBx\fR or \fBX\fR
Convert integer to unsigned hexadecimal string, using digits
.QW 0123456789abcdef
for \fBx\fR and
.QW 0123456789ABCDEF
for \fBX\fR).
.TP 10
\fBb\fR
Convert integer to binary string, using digits 0 and 1.
.TP 10
\fBc\fR
Convert integer to the Unicode character it represents.
.TP 10
\fBs\fR
No conversion; just insert string.
.TP 10
\fBf\fR
Convert number to signed decimal string of
the form \fIxx.yyy\fR, where the number of \fIy\fR's is determined by
the precision (default: 6).
If the precision is 0 then no decimal point is output.
.TP 10
\fBe\fR or \fBE\fR
Convert number to scientific notation in the
form \fIx.yyy\fBe\(+-\fIzz\fR, where the number of \fIy\fR's is determined
by the precision (default: 6).
If the precision is 0 then no decimal point is output.
If the \fBE\fR form is used then \fBE\fR is
printed instead of \fBe\fR.
.TP 10
\fBg\fR or \fBG\fR
If the exponent is less than \-4 or greater than or equal to the
precision, then convert number as for \fB%e\fR or
\fB%E\fR.
Otherwise convert as for \fB%f\fR.
Trailing zeroes and a trailing decimal point are omitted.
.TP 10
\fB%\fR
No conversion: just insert \fB%\fR.
.SH "DIFFERENCES FROM ANSI SPRINTF"
.PP
The behavior of the format command is the same as the
ANSI C \fBsprintf\fR procedure except for the following
differences:
.IP [1]
Tcl guarantees that it will be working with UNICODE characters.
.IP [2]
\fB%p\fR and \fB%n\fR specifiers are not supported.
.IP [3]
For \fB%c\fR conversions the argument must be an integer value,
which will then be converted to the corresponding character value.
.IP [4]
The size modifiers are ignored when formatting floating-point values.
The \fBll\fR modifier has no \fBsprintf\fR counterpart.
The \fBb\fR specifier has no \fBsprintf\fR counterpart.
.SH EXAMPLES
.PP
Convert the numeric value of a UNICODE character to the character
itself:
.PP
.CS
set value 120
set char [\fBformat\fR %c $value]
.CE
.PP
Convert the output of \fBtime\fR into seconds to an accuracy of
hundredths of a second:
.PP
.CS
set us [lindex [time $someTclCode] 0]
puts [\fBformat\fR "%.2f seconds to execute" [expr {$us / 1e6}]]
.CE
.PP
Create a packed X11 literal color specification:
.PP
.CS
# Each color-component should be in range (0..255)
set color [\fBformat\fR "#%02x%02x%02x" $r $g $b]
.CE
.PP
Use XPG3 format codes to allow reordering of fields (a technique that
is often used in localized message catalogs; see \fBmsgcat\fR) without
reordering the data values passed to \fBformat\fR:
.PP
.CS
set fmt1 "Today, %d shares in %s were bought at $%.2f each"
puts [\fBformat\fR $fmt1 123 "Global BigCorp" 19.37]

set fmt2 "Bought %2\e$s equity ($%3$.2f x %1\e$d) today"
puts [\fBformat\fR $fmt2 123 "Global BigCorp" 19.37]
.CE
.PP
Print a small table of powers of three:
.PP
.CS
# Set up the column widths
set w1 5
set w2 10

# Make a nice header (with separator) for the table first
set sep +-[string repeat - $w1]-+-[string repeat - $w2]-+
puts $sep
puts [\fBformat\fR "| %-*s | %-*s |" $w1 "Index" $w2 "Power"]
puts $sep

# Print the contents of the table
set p 1
for {set i 0} {$i<=20} {incr i} {
    puts [\fBformat\fR "| %*d | %*ld |" $w1 $i $w2 $p]
    set p [expr {wide($p) * 3}]
}

# Finish off by printing the separator again
puts $sep
.CE
.SH "SEE ALSO"
scan(n), sprintf(3), string(n)
.SH KEYWORDS
conversion specifier, format, sprintf, string, substitution
'\" Local Variables:
'\" mode: nroff
'\" End: